From 30b79f286eb8fb088517e34aee53efa4ae2b8e33 Mon Sep 17 00:00:00 2001
From: haozhu233 Contents
@@ -340,38 +338,44 @@ Data Loadingregdiffusion package comes with a set of preprocessed data, including the BEELINE benchmarks, Hammond microglia in male adult mice, and another labelled microglia subset from a mice cerebellum atlas project.
Here we use the mESC
data from the BEELINE benchmark. The mESC
data comes from Mouse embryonic stem cells. It has 421 cells and 1,620 genes.
If you want to see the inference on a larger network with 14,000+ genes and 8,000+ cells, check out the other example.
-bl_dt, bl_gt = rd.data.load_beeline(
+bl_dt, bl_gt = rd.data.load_beeline(
benchmark_data='mESC', benchmark_setting='1000_STRING'
)
Here, load_beeline
gives you a tuple, where the first element is an anndata of the single cell experession data and the second element is an array of all the ground truth links (based on the STRING network in this case).
-bl_dt
+```python
+bl_dt
-AnnData object with n_obs × n_vars = 421 × 1620
-obs: ‘cell_type’, ‘cell_type_index’
-
-
-GRN Inference#
-You are recommended to use the provided trainer to train a RegDiffusion Model. You need to provide the expression data in a numpy array to the trainer.
-During the training process, the training loss and the average amount of change on the adjacency matrix are provided on the progress bar. The model converges when the step change n the adjacency matrix is near-zero. By default, the train
method will train the model for 1,000 iterations. It should be sufficient in most cases. If you want to keep training the model afterwards, you can simply call the train
methods again with the desired number of iterations.
-rd_trainer = rd.RegDiffusionTrainer(bl_dt.X)
-rd_trainer.train()
+
+## GRN Inference
+
+You are recommended to use the provided trainer to train a RegDiffusion Model. You need to provide the expression data in a numpy array to the trainer.
+
+During the training process, the training loss and the average amount of change on the adjacency matrix are provided on the progress bar. The model converges when the step change n the adjacency matrix is near-zero. By default, the `train` method will train the model for 1,000 iterations. It should be sufficient in most cases. If you want to keep training the model afterwards, you can simply call the `train` methods again with the desired number of iterations.
+
+
+
+rd_trainer = rd.RegDiffusionTrainer(bl_dt.X)
+rd_trainer.train()
+
+We run this experiment on an A100 card and the inference finishes within 8 seconds.
+
+When ground truth links are avaiable, you can test the inference performance by setting up an evaluator. You need to provide both the ground truth links and the gene names. Note that the order of the provided gene names here should be the same as the column order in the expression table (and the inferred adjacency matrix).
+
-We run this experiment on an A100 card and the inference finishes within 8 seconds.
-When ground truth links are avaiable, you can test the inference performance by setting up an evaluator. You need to provide both the ground truth links and the gene names. Note that the order of the provided gene names here should be the same as the column order in the expression table (and the inferred adjacency matrix).
-evaluator = rd.evaluator.GRNEvaluator(bl_gt, bl_dt.var_names)
-inferred_adj = rd_trainer.get_adj()
-evaluator.evaluate(inferred_adj)
+evaluator = rd.evaluator.GRNEvaluator(bl_gt, bl_dt.var_names)
+inferred_adj = rd_trainer.get_adj()
+evaluator.evaluate(inferred_adj)
+
+## GRN object
+
+In order to facilitate the downstream analyses on GRN, we defined an `GRN` object in the `regdiffusion` package. You need to provide the gene names in the same order as in your expression table.
-
-GRN object#
-In order to facilitate the downstream analyses on GRN, we defined an GRN
object in the regdiffusion
package. You need to provide the gene names in the same order as in your expression table.
-
@@ -421,8 +425,6 @@ GRN object
Requirements
Data Loading
-GRN Inference
-GRN object
diff --git a/searchindex.js b/searchindex.js
index d99f8f4..49d0eb5 100644
--- a/searchindex.js
+++ b/searchindex.js
@@ -1 +1 @@
-Search.setIndex({"docnames": ["index", "modules", "quick_tour", "regdiffusion", "regdiffusion.data", "regdiffusion.models"], "filenames": ["index.rst", "modules.rst", "quick_tour.md", "regdiffusion.rst", "regdiffusion.data.rst", "regdiffusion.models.rst"], "titles": ["RegDiffusion", "regdiffusion", "Getting Startted with GRN inference using diffusion model", "regdiffusion package", "regdiffusion.data package", "regdiffusion.models package"], "terms": {"i": [0, 2, 3, 4, 5], "veri": [0, 3], "fast": 0, "regulatori": [0, 3], "algorithm": 0, "base": [0, 2, 3, 5], "probabilist": [0, 5], "diffus": [0, 3, 5], "model": [0, 1, 3], "It": [0, 2, 3], "work": 0, "well": 0, "gene": [0, 2, 3, 4, 5], "capabl": [0, 2], "rapidli": 0, "predict": [0, 3], "biolog": [0, 2], "verifi": 0, "link": [0, 2], "from": [0, 2, 3, 4, 5], "larg": [0, 3], "singl": [0, 2, 3, 4, 5], "cell": [0, 2, 3, 4, 5], "rna": 0, "seq": [0, 4], "data": [0, 1, 3], "10": [0, 2, 3], "000": [0, 2], "avail": [0, 4], "pypi": 0, "pip": 0, "thi": [0, 2, 3, 5], "packag": [0, 1, 2], "provid": [0, 2, 3, 5], "offici": 0, "implement": 0, "set": [0, 2, 3, 4], "easi": 0, "us": [0, 3, 5], "companion": 0, "tool": 0, "evalu": [0, 1, 2], "analyz": [0, 3], "visual": [0, 3], "we": [0, 2, 3, 4], "also": [0, 3], "access": 0, "grn": [0, 1], "benchmark": [0, 2, 4], "preprocess": [0, 2], "dataset": [0, 4], "tri": 0, "keep": [0, 2], "top": [0, 3], "level": [0, 3], "interfac": [0, 3], "straightforward": 0, "right": 0, "now": 0, "onli": [0, 2, 3, 4], "consist": 0, "4": [0, 3, 4, 5], "compon": 0, "regdiffusiontrain": [0, 1, 2, 3], "class": [0, 3, 5], "grnevalu": [0, 1, 2, 3], "modul": [0, 1], "you": [0, 2, 3], "can": [0, 2, 3], "train": [0, 1, 2, 3, 5], "log": [0, 1, 2, 3, 4], "transform": [0, 2, 4], "express": [0, 2, 3], "numpi": [0, 2, 3], "arrai": [0, 2, 3], "The": [0, 2, 3, 5], "process": [0, 2], "could": 0, "either": [0, 3, 4], "start": [0, 1, 3], "continu": 0, "method": [0, 2, 3], "export": [0, 3], "get_grn": [0, 1, 3], "contain": [0, 3], "save": [0, 1, 3], "adjac": [0, 2, 3, 5], "matrix": [0, 2, 3, 5], "correspond": [0, 3, 4], "name": [0, 2, 3], "object": [0, 3], "local": [0, 3], "hdf5": [0, 3], "file": [0, 3], "to_hdf5": [0, 1, 3], "reload": 0, "read_hdf5": [0, 1, 3], "function": [0, 3, 5], "come": [0, 2, 3], "region": 0, "For": [0, 2, 3, 5], "exampl": [0, 2, 3], "visualize_local_neighborhood": [0, 1, 3], "gener": [0, 2, 3], "similar": 0, "plot": 0, "paper": [0, 2, 5], "extract": 0, "underli": 0, "list": [0, 3, 5], "extract_node_2hop_neighborhood": [0, 1, 3], "ground": [0, 2, 3, 4], "truth": [0, 2, 3, 4], "relationship": 0, "often": 0, "exist": 0, "edg": [0, 3], "valu": [0, 3, 5], "ar": [0, 2, 3, 5], "design": 0, "fill": 0, "gap": 0, "support": [0, 3], "common": 0, "metric": [0, 3], "auroc": [0, 3], "aupr": [0, 3], "ratio": 0, "ep": [0, 3], "epr": [0, 3], "includ": [0, 2, 3], "beelin": [0, 1, 2, 3], "our": [0, 2, 5], "mous": [0, 2, 4], "microglia": [0, 1, 2, 3], "after": 0, "converg": [0, 2], "what": 0, "get": 0, "simpli": [0, 2, 3], "an": [0, 2, 3], "when": [0, 2, 3], "have": [0, 3], "thousand": 0, "ten": 0, "": [0, 3], "difficult": 0, "scale": 0, "In": [0, 2, 3], "propos": [0, 2], "wai": [0, 3], "focus": 0, "care": [0, 5], "most": [0, 2, 3], "check": [0, 2], "out": [0, 2], "tutori": [0, 2], "left": 0, "side": 0, "how": 0, "perform": [0, 2, 3, 5], "analysi": 0, "like": 0, "one": [0, 5], "did": 0, "interact": 0, "15": 0, "take": [0, 3, 5], "under": 0, "5": [0, 3, 5], "minut": [0, 2], "a100": [0, 2], "gpu": [0, 2], "contrast": 0, "previou": [0, 2], "vae": 0, "would": [0, 5], "more": 0, "than": [0, 3], "hour": 0, "same": [0, 2, 3], "devic": [0, 2, 3], "even": 0, "don": 0, "t": [0, 3, 5], "those": 0, "fanci": 0, "card": [0, 2], "still": 0, "roughli": 0, "3": [0, 3, 5], "mid": 0, "rang": 0, "12": 0, "core": 0, "cpu": 0, "pleas": [0, 5], "consid": [0, 3], "cite": 0, "found": 0, "your": [0, 2, 3], "subpackag": 1, "submodul": 1, "util": [1, 3], "content": 1, "extract_node_neighbor": [1, 3], "extract_node_neighbors_as_indic": [1, 3], "extract_node_sourc": [1, 3], "extract_node_sources_as_indic": [1, 3], "extract_node_target": [1, 3], "extract_node_targets_as_indic": [1, 3], "generate_adj_list": [1, 3], "logger": 1, "lightlogg": [1, 3], "check_early_stop": [1, 3], "finish": [1, 2, 3], "set_config": [1, 3], "to_df": [1, 3], "load_logg": [1, 3], "trainer": [1, 2], "forward_pass": [1, 3], "get_adj": [1, 2, 3, 5], "training_curv": [1, 3], "linear_beta_schedul": [1, 3], "power_beta_schedul": [1, 3], "ha": [2, 4], "been": [2, 4], "wide": 2, "ai": 2, "especi": 2, "vision": 2, "domain": 2, "regdiffus": 2, "compar": 2, "complet": [2, 3], "within": [2, 3, 5], "fraction": 2, "time": [2, 3, 5], "yield": 2, "better": 2, "result": 2, "run": [2, 3, 5], "insight": 2, "network": [2, 3], "need": [2, 3, 5], "python": [2, 3], "acceler": 2, "speed": 2, "mai": [2, 3], "want": 2, "latest": 2, "cuda": [2, 3], "instal": 2, "import": 2, "rd": 2, "input": 2, "where": [2, 3, 4], "column": [2, 3, 4], "row": [2, 3, 4], "expect": [2, 3, 5], "among": [2, 4], "depend": 2, "hardwar": 2, "so": 2, "appli": 2, "heavi": 2, "filter": 2, "remov": 2, "all": [2, 3, 5], "total": 2, "raw": 2, "count": [2, 4], "0": [2, 3, 4, 5], "hammond": [2, 4], "male": [2, 4], "adult": 2, "mice": [2, 4], "anoth": 2, "label": [2, 3], "subset": 2, "cerebellum": [2, 4], "atla": [2, 4], "project": 2, "here": 2, "mesc": [2, 4], "embryon": 2, "stem": 2, "421": 2, "1": [2, 3, 5], "620": 2, "If": [2, 3, 4, 5], "see": [2, 3], "larger": 2, "14": 2, "8": [2, 3], "other": [2, 3], "bl_dt": 2, "bl_gt": 2, "load_beelin": [2, 3, 4], "benchmark_data": [2, 4], "benchmark_set": [2, 4], "1000_string": [2, 4], "give": 2, "tupl": [2, 4], "first": [2, 4, 5], "element": [2, 4], "anndata": 2, "experess": 2, "second": [2, 4], "string": 2, "case": [2, 3], "n_ob": 2, "n_var": 2, "1620": 2, "ob": 2, "cell_typ": [2, 3], "cell_type_index": 2, "recommend": 2, "dure": [2, 5], "loss": 2, "averag": 2, "amount": 2, "chang": 2, "progress": 2, "bar": 2, "step": [2, 3, 4, 5], "n": 2, "zero": [2, 3], "By": 2, "default": [2, 3, 5], "iter": 2, "should": [2, 5], "suffici": 2, "afterward": [2, 5], "call": [2, 5], "again": 2, "desir": 2, "number": [2, 5], "rd_trainer": 2, "x": [2, 5], "experi": [2, 3], "avaiabl": 2, "test": 2, "up": 2, "both": 2, "note": [2, 3], "order": [2, 3], "tabl": 2, "var_nam": 2, "inferred_adj": 2, "facilit": 2, "downstream": 2, "analys": 2, "defin": [2, 5], "cell_type_separ": [3, 4], "download_beelin": [3, 4], "load_beeline_ground_truth": [3, 4], "download_regdiffusion_data": [3, 4], "load_atlas_microglia": [3, 4], "load_hammond_microglia": [3, 4], "download_fil": [3, 4], "block": [3, 5], "forward": [3, 5], "geneembed": [3, 5], "i_minus_a": [3, 5], "get_adj_": [3, 5], "get_gene_emb": [3, 5], "get_sampled_adj_": [3, 5], "soft_threshold": [3, 5], "sinusoidalpositionembed": [3, 5], "ground_truth": 3, "gene_nam": 3, "auprr": 3, "sourc": [3, 4, 5], "A": [3, 5], "infer": [3, 5], "paramet": [3, 4, 5], "np": 3, "ndarrai": 3, "2d": 3, "hold": 3, "each": 3, "target": 3, "node": 3, "b": 3, "c": 3, "1d": 3, "make": 3, "sure": 3, "current": 3, "adj_matrix": 3, "tf_name": 3, "none": [3, 5], "top_gene_percentil": 3, "int": [3, 5], "between": [3, 5], "transcript": 3, "factor": 3, "shape": 3, "mani": 3, "tf": 3, "specifi": [3, 5], "squar": 3, "weight": 3, "probabl": 3, "float": [3, 5], "To": 3, "creat": 3, "least": 3, "two": 3, "thing": 3, "further": 3, "format": 3, "load": [3, 4], "space": 3, "concern": 3, "calcul": 3, "cutoff": 3, "point": 3, "everi": [3, 5], "whose": 3, "absolut": 3, "below": 3, "later": 3, "spars": 3, "reduc": 3, "requir": 3, "option": 3, "k": 3, "kept": 3, "str": [3, 4], "20": 3, "datafram": 3, "panda": 3, "neighborhood": 3, "2": 3, "hop": 3, "around": 3, "select": [3, 4], "inspect": 3, "node_s": 3, "size": [3, 5], "direct": 3, "neighbor": 3, "sort": 3, "dict": 3, "dictionari": 3, "slightli": 3, "faster": 3, "version": 3, "file_path": [3, 4], "as_spars": 3, "bool": 3, "fals": 3, "prefer": 3, "path": 3, "whether": 3, "edge_width": 3, "font_siz": 3, "30": 3, "node_group_dict": 3, "cdn_resourc": 3, "remot": 3, "notebook": 3, "true": [3, 4], "vi": 3, "j": 3, "width": 3, "1st": 3, "2nd": 3, "font": 3, "kei": 3, "being": 3, "group": 3, "color": 3, "resourc": 3, "boolean": 3, "indic": 3, "happen": 3, "jupyt": 3, "read": 3, "document": 3, "detail": [3, 5], "result_dir": 3, "result_log": 3, "log_dat": 3, "lightweight": 3, "inspir": 3, "w": 3, "environ": 3, "multipl": 3, "separ": 3, "dir": 3, "date": 3, "custom": 3, "subdirectori": 3, "variabl": 3, "item": 3, "save_now": 3, "end": [3, 4], "dump": 3, "stream": 3, "memori": [3, 4], "log_dict": 3, "which": 3, "config": 3, "configur": 3, "futur": 3, "experiment": 3, "hyper": 3, "new": 3, "tidi": 3, "convert": 3, "df": 3, "json": 3, "exp_arrai": 3, "5000": 3, "start_nois": 3, "0001": 3, "end_nois": 3, "02": 3, "lr_nn": 3, "001": 3, "lr_adj": 3, "weight_decay_nn": 3, "weight_decay_adj": 3, "01": 3, "sparse_loss_coef": 3, "25": 3, "adj_dropout": [3, 5], "batch_siz": 3, "128": 3, "n_step": 3, "1000": 3, "train_split": 3, "train_split_se": 3, "123": 3, "eval_on_n_step": 3, "100": 3, "time_dim": [3, 5], "64": 3, "celltype_dim": [3, 5], "hidden_dim": [3, 5], "16": [3, 5], "init_coef": [3, 5], "compil": 3, "initi": [3, 5], "x_0": 3, "pass": [3, 5], "torch": 3, "floattensor": 3, "tensor": 3, "longtensor": 3, "mean_schedul": 3, "mean": 3, "schedul": 3, "std_schedul": 3, "std": 3, "timestep": 3, "power": 3, "analyt": 3, "sc_data": 4, "cell_type_element_indic": 4, "sep": 4, "_": 4, "save_dir": 4, "remove_zip": 4, "data_dir": 4, "hesc": 4, "500_string": 4, "download": 4, "necessari": 4, "root": 4, "folder": 4, "locat": 4, "choos": 4, "hhep": 4, "mdc": 4, "mhsc": 4, "gm": 4, "l": 4, "500_non": 4, "chip": 4, "1000_non": 4, "500_chip": 4, "1000_chip": 4, "500_lofgof": 4, "1000_lofgof": 4, "lofgof": 4, "return": 4, "scanpi": 4, "type": [4, 5], "file_nam": 4, "scp795": 4, "http": 4, "singlecel": 4, "broadinstitut": 4, "org": 4, "single_cel": 4, "studi": 4, "transcriptom": 4, "summari": 4, "just": 4, "p100": 4, "url": 4, "chunk_siz": 4, "1024": 4, "in_dim": 5, "out_dim": 5, "ct": 5, "comput": 5, "overridden": 5, "subclass": 5, "although": 5, "recip": 5, "instanc": 5, "instead": 5, "sinc": 5, "former": 5, "regist": 5, "hook": 5, "while": 5, "latter": 5, "silent": 5, "ignor": 5, "them": 5, "n_gene": 5, "gene_dim": 5, "n_celltyp": 5, "architectur": 5, "refer": 5, "nois": 5, "knowledg": 5, "neural": 5, "dimens": 5, "embed": 5, "celltyp": 5, "integ": 5, "hidden": 5, "layer": 5, "percentag": 5, "drop": 5, "coeffici": 5, "multipli": 5, "regul": 5, "norm": 5, "tau": 5, "dim": 5, "theta": 5, "10000": 5}, "objects": {"": [[3, 0, 0, "-", "regdiffusion"]], "regdiffusion": [[3, 1, 1, "", "GRN"], [3, 1, 1, "", "GRNEvaluator"], [3, 1, 1, "", "LightLogger"], [3, 1, 1, "", "RegDiffusionTrainer"], [4, 0, 0, "-", "data"], [3, 0, 0, "-", "evaluator"], [3, 0, 0, "-", "grn"], [3, 3, 1, "", "load_logger"], [3, 0, 0, "-", "logger"], [5, 0, 0, "-", "models"], [3, 3, 1, "", "read_hdf5"], [3, 0, 0, "-", "trainer"]], "regdiffusion.GRN": [[3, 2, 1, "", "extract_node_2hop_neighborhood"], [3, 2, 1, "", "extract_node_neighbors"], [3, 2, 1, "", "extract_node_neighbors_as_indices"], [3, 2, 1, "", "extract_node_sources"], [3, 2, 1, "", "extract_node_sources_as_indices"], [3, 2, 1, "", "extract_node_targets"], [3, 2, 1, "", "extract_node_targets_as_indices"], [3, 2, 1, "", "generate_adj_list"], [3, 2, 1, "", "to_hdf5"], [3, 2, 1, "", "visualize_local_neighborhood"]], "regdiffusion.GRNEvaluator": [[3, 2, 1, "", "evaluate"]], "regdiffusion.LightLogger": [[3, 2, 1, "", "check_early_stopping"], [3, 2, 1, "", "finish"], [3, 2, 1, "", "log"], [3, 2, 1, "", "save"], [3, 2, 1, "", "set_configs"], [3, 2, 1, "", "start"], [3, 2, 1, "", "to_df"]], "regdiffusion.RegDiffusionTrainer": [[3, 2, 1, "", "forward_pass"], [3, 2, 1, "", "get_adj"], [3, 2, 1, "", "get_grn"], [3, 2, 1, "", "train"], [3, 2, 1, "", "training_curves"]], "regdiffusion.data": [[4, 0, 0, "-", "beeline"], [4, 0, 0, "-", "microglia"], [4, 0, 0, "-", "utils"]], "regdiffusion.data.beeline": [[4, 3, 1, "", "cell_type_separator"], [4, 3, 1, "", "download_beeline"], [4, 3, 1, "", "load_beeline"], [4, 3, 1, "", "load_beeline_ground_truth"]], "regdiffusion.data.microglia": [[4, 3, 1, "", "download_regdiffusion_data"], [4, 3, 1, "", "load_atlas_microglia"], [4, 3, 1, "", "load_hammond_microglia"]], "regdiffusion.data.utils": [[4, 3, 1, "", "download_file"]], "regdiffusion.evaluator": [[3, 1, 1, "", "GRNEvaluator"]], "regdiffusion.evaluator.GRNEvaluator": [[3, 2, 1, "", "evaluate"]], "regdiffusion.grn": [[3, 1, 1, "", "GRN"], [3, 3, 1, "", "read_hdf5"]], "regdiffusion.grn.GRN": [[3, 2, 1, "", "extract_node_2hop_neighborhood"], [3, 2, 1, "", "extract_node_neighbors"], [3, 2, 1, "", "extract_node_neighbors_as_indices"], [3, 2, 1, "", "extract_node_sources"], [3, 2, 1, "", "extract_node_sources_as_indices"], [3, 2, 1, "", "extract_node_targets"], [3, 2, 1, "", "extract_node_targets_as_indices"], [3, 2, 1, "", "generate_adj_list"], [3, 2, 1, "", "to_hdf5"], [3, 2, 1, "", "visualize_local_neighborhood"]], "regdiffusion.logger": [[3, 1, 1, "", "LightLogger"], [3, 3, 1, "", "load_logger"]], "regdiffusion.logger.LightLogger": [[3, 2, 1, "", "check_early_stopping"], [3, 2, 1, "", "finish"], [3, 2, 1, "", "log"], [3, 2, 1, "", "save"], [3, 2, 1, "", "set_configs"], [3, 2, 1, "", "start"], [3, 2, 1, "", "to_df"]], "regdiffusion.models": [[5, 0, 0, "-", "regdiffusion"]], "regdiffusion.models.regdiffusion": [[5, 1, 1, "", "Block"], [5, 1, 1, "", "GeneEmbeddings"], [5, 1, 1, "", "RegDiffusion"], [5, 1, 1, "", "SinusoidalPositionEmbeddings"]], "regdiffusion.models.regdiffusion.Block": [[5, 2, 1, "", "forward"]], "regdiffusion.models.regdiffusion.GeneEmbeddings": [[5, 2, 1, "", "forward"]], "regdiffusion.models.regdiffusion.RegDiffusion": [[5, 2, 1, "", "I_minus_A"], [5, 2, 1, "", "forward"], [5, 2, 1, "", "get_adj"], [5, 2, 1, "", "get_adj_"], [5, 2, 1, "", "get_gene_emb"], [5, 2, 1, "", "get_sampled_adj_"], [5, 2, 1, "", "soft_thresholding"]], "regdiffusion.models.regdiffusion.SinusoidalPositionEmbeddings": [[5, 2, 1, "", "forward"]], "regdiffusion.trainer": [[3, 1, 1, "", "RegDiffusionTrainer"], [3, 3, 1, "", "linear_beta_schedule"], [3, 3, 1, "", "power_beta_schedule"]], "regdiffusion.trainer.RegDiffusionTrainer": [[3, 2, 1, "", "forward_pass"], [3, 2, 1, "", "get_adj"], [3, 2, 1, "", "get_grn"], [3, 2, 1, "", "train"], [3, 2, 1, "", "training_curves"]]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:function"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "function", "Python function"]}, "titleterms": {"regdiffus": [0, 1, 3, 4, 5], "instal": 0, "quick": 0, "tour": 0, "understand": 0, "infer": [0, 2], "network": 0, "speed": 0, "citat": 0, "get": 2, "start": 2, "grn": [2, 3], "us": 2, "diffus": 2, "model": [2, 5], "requir": 2, "data": [2, 4], "load": 2, "object": 2, "packag": [3, 4, 5], "subpackag": 3, "submodul": [3, 4, 5], "evalu": 3, "modul": [3, 4, 5], "logger": 3, "trainer": 3, "content": [3, 4, 5], "beelin": 4, "microglia": 4, "util": 4}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1, "sphinx": 60}, "alltitles": {"RegDiffusion": [[0, "regdiffusion"]], "Installation": [[0, "installation"]], "Quick Tour": [[0, "quick-tour"]], "Understanding the Inferred Networks": [[0, "understanding-the-inferred-networks"]], "Inference Speed": [[0, "inference-speed"]], "Citation": [[0, "citation"]], "regdiffusion": [[1, "regdiffusion"]], "Getting Startted with GRN inference using diffusion model": [[2, "getting-startted-with-grn-inference-using-diffusion-model"]], "Requirements": [[2, "requirements"]], "Data Loading": [[2, "data-loading"]], "GRN Inference": [[2, "grn-inference"]], "GRN object": [[2, "grn-object"]], "regdiffusion package": [[3, "regdiffusion-package"]], "Subpackages": [[3, "subpackages"]], "Submodules": [[3, "submodules"], [4, "submodules"], [5, "submodules"]], "regdiffusion.evaluator module": [[3, "module-regdiffusion.evaluator"]], "regdiffusion.grn module": [[3, "module-regdiffusion.grn"]], "regdiffusion.logger module": [[3, "module-regdiffusion.logger"]], "regdiffusion.trainer module": [[3, "module-regdiffusion.trainer"]], "Module contents": [[3, "module-regdiffusion"], [4, "module-regdiffusion.data"], [5, "module-regdiffusion.models"]], "regdiffusion.data package": [[4, "regdiffusion-data-package"]], "regdiffusion.data.beeline module": [[4, "module-regdiffusion.data.beeline"]], "regdiffusion.data.microglia module": [[4, "module-regdiffusion.data.microglia"]], "regdiffusion.data.utils module": [[4, "module-regdiffusion.data.utils"]], "regdiffusion.models package": [[5, "regdiffusion-models-package"]], "regdiffusion.models.regdiffusion module": [[5, "module-regdiffusion.models.regdiffusion"]]}, "indexentries": {"grn (class in regdiffusion)": [[3, "regdiffusion.GRN"]], "grn (class in regdiffusion.grn)": [[3, "regdiffusion.grn.GRN"]], "grnevaluator (class in regdiffusion)": [[3, "regdiffusion.GRNEvaluator"]], "grnevaluator (class in regdiffusion.evaluator)": [[3, "regdiffusion.evaluator.GRNEvaluator"]], "lightlogger (class in regdiffusion)": [[3, "regdiffusion.LightLogger"]], "lightlogger (class in regdiffusion.logger)": [[3, "regdiffusion.logger.LightLogger"]], "regdiffusiontrainer (class in regdiffusion)": [[3, "regdiffusion.RegDiffusionTrainer"]], "regdiffusiontrainer (class in regdiffusion.trainer)": [[3, "regdiffusion.trainer.RegDiffusionTrainer"]], "check_early_stopping() (regdiffusion.lightlogger method)": [[3, "regdiffusion.LightLogger.check_early_stopping"]], "check_early_stopping() (regdiffusion.logger.lightlogger method)": [[3, "regdiffusion.logger.LightLogger.check_early_stopping"]], "evaluate() (regdiffusion.grnevaluator method)": [[3, "regdiffusion.GRNEvaluator.evaluate"]], "evaluate() (regdiffusion.evaluator.grnevaluator method)": [[3, "regdiffusion.evaluator.GRNEvaluator.evaluate"]], "extract_node_2hop_neighborhood() (regdiffusion.grn method)": [[3, "regdiffusion.GRN.extract_node_2hop_neighborhood"]], "extract_node_2hop_neighborhood() (regdiffusion.grn.grn method)": [[3, "regdiffusion.grn.GRN.extract_node_2hop_neighborhood"]], "extract_node_neighbors() (regdiffusion.grn method)": [[3, "regdiffusion.GRN.extract_node_neighbors"]], "extract_node_neighbors() (regdiffusion.grn.grn method)": [[3, "regdiffusion.grn.GRN.extract_node_neighbors"]], "extract_node_neighbors_as_indices() (regdiffusion.grn method)": [[3, "regdiffusion.GRN.extract_node_neighbors_as_indices"]], "extract_node_neighbors_as_indices() (regdiffusion.grn.grn method)": [[3, "regdiffusion.grn.GRN.extract_node_neighbors_as_indices"]], "extract_node_sources() (regdiffusion.grn method)": [[3, "regdiffusion.GRN.extract_node_sources"]], "extract_node_sources() (regdiffusion.grn.grn method)": [[3, "regdiffusion.grn.GRN.extract_node_sources"]], "extract_node_sources_as_indices() (regdiffusion.grn method)": [[3, "regdiffusion.GRN.extract_node_sources_as_indices"]], "extract_node_sources_as_indices() (regdiffusion.grn.grn method)": [[3, "regdiffusion.grn.GRN.extract_node_sources_as_indices"]], "extract_node_targets() (regdiffusion.grn method)": [[3, "regdiffusion.GRN.extract_node_targets"]], "extract_node_targets() (regdiffusion.grn.grn method)": [[3, "regdiffusion.grn.GRN.extract_node_targets"]], "extract_node_targets_as_indices() (regdiffusion.grn method)": [[3, "regdiffusion.GRN.extract_node_targets_as_indices"]], "extract_node_targets_as_indices() (regdiffusion.grn.grn method)": [[3, "regdiffusion.grn.GRN.extract_node_targets_as_indices"]], "finish() (regdiffusion.lightlogger method)": [[3, "regdiffusion.LightLogger.finish"]], "finish() (regdiffusion.logger.lightlogger method)": [[3, "regdiffusion.logger.LightLogger.finish"]], "forward_pass() (regdiffusion.regdiffusiontrainer method)": [[3, "regdiffusion.RegDiffusionTrainer.forward_pass"]], "forward_pass() (regdiffusion.trainer.regdiffusiontrainer method)": [[3, "regdiffusion.trainer.RegDiffusionTrainer.forward_pass"]], "generate_adj_list() (regdiffusion.grn method)": [[3, "regdiffusion.GRN.generate_adj_list"]], "generate_adj_list() (regdiffusion.grn.grn method)": [[3, "regdiffusion.grn.GRN.generate_adj_list"]], "get_adj() (regdiffusion.regdiffusiontrainer method)": [[3, "regdiffusion.RegDiffusionTrainer.get_adj"]], "get_adj() (regdiffusion.trainer.regdiffusiontrainer method)": [[3, "regdiffusion.trainer.RegDiffusionTrainer.get_adj"]], "get_grn() (regdiffusion.regdiffusiontrainer method)": [[3, "regdiffusion.RegDiffusionTrainer.get_grn"]], "get_grn() (regdiffusion.trainer.regdiffusiontrainer method)": [[3, "regdiffusion.trainer.RegDiffusionTrainer.get_grn"]], "linear_beta_schedule() (in module regdiffusion.trainer)": [[3, "regdiffusion.trainer.linear_beta_schedule"]], "load_logger() (in module regdiffusion)": [[3, "regdiffusion.load_logger"]], "load_logger() (in module regdiffusion.logger)": [[3, "regdiffusion.logger.load_logger"]], "log() (regdiffusion.lightlogger method)": [[3, "regdiffusion.LightLogger.log"]], "log() (regdiffusion.logger.lightlogger method)": [[3, "regdiffusion.logger.LightLogger.log"]], "module": [[3, "module-regdiffusion"], [3, "module-regdiffusion.evaluator"], [3, "module-regdiffusion.grn"], [3, "module-regdiffusion.logger"], [3, "module-regdiffusion.trainer"], [4, "module-regdiffusion.data"], [4, "module-regdiffusion.data.beeline"], [4, "module-regdiffusion.data.microglia"], [4, "module-regdiffusion.data.utils"], [5, "module-regdiffusion.models"], [5, "module-regdiffusion.models.regdiffusion"]], "power_beta_schedule() (in module regdiffusion.trainer)": [[3, "regdiffusion.trainer.power_beta_schedule"]], "read_hdf5() (in module regdiffusion)": [[3, "regdiffusion.read_hdf5"]], "read_hdf5() (in module regdiffusion.grn)": [[3, "regdiffusion.grn.read_hdf5"]], "regdiffusion": [[3, "module-regdiffusion"]], "regdiffusion.evaluator": [[3, "module-regdiffusion.evaluator"]], "regdiffusion.grn": [[3, "module-regdiffusion.grn"]], "regdiffusion.logger": [[3, "module-regdiffusion.logger"]], "regdiffusion.trainer": [[3, "module-regdiffusion.trainer"]], "save() (regdiffusion.lightlogger method)": [[3, "regdiffusion.LightLogger.save"]], "save() (regdiffusion.logger.lightlogger method)": [[3, "regdiffusion.logger.LightLogger.save"]], "set_configs() (regdiffusion.lightlogger method)": [[3, "regdiffusion.LightLogger.set_configs"]], "set_configs() (regdiffusion.logger.lightlogger method)": [[3, "regdiffusion.logger.LightLogger.set_configs"]], "start() (regdiffusion.lightlogger method)": [[3, "regdiffusion.LightLogger.start"]], "start() (regdiffusion.logger.lightlogger method)": [[3, "regdiffusion.logger.LightLogger.start"]], "to_df() (regdiffusion.lightlogger method)": [[3, "regdiffusion.LightLogger.to_df"]], "to_df() (regdiffusion.logger.lightlogger method)": [[3, "regdiffusion.logger.LightLogger.to_df"]], "to_hdf5() (regdiffusion.grn method)": [[3, "regdiffusion.GRN.to_hdf5"]], "to_hdf5() (regdiffusion.grn.grn method)": [[3, "regdiffusion.grn.GRN.to_hdf5"]], "train() (regdiffusion.regdiffusiontrainer method)": [[3, "regdiffusion.RegDiffusionTrainer.train"]], "train() (regdiffusion.trainer.regdiffusiontrainer method)": [[3, "regdiffusion.trainer.RegDiffusionTrainer.train"]], "training_curves() (regdiffusion.regdiffusiontrainer method)": [[3, "regdiffusion.RegDiffusionTrainer.training_curves"]], "training_curves() (regdiffusion.trainer.regdiffusiontrainer method)": [[3, "regdiffusion.trainer.RegDiffusionTrainer.training_curves"]], "visualize_local_neighborhood() (regdiffusion.grn method)": [[3, "regdiffusion.GRN.visualize_local_neighborhood"]], "visualize_local_neighborhood() (regdiffusion.grn.grn method)": [[3, "regdiffusion.grn.GRN.visualize_local_neighborhood"]], "cell_type_separator() (in module regdiffusion.data.beeline)": [[4, "regdiffusion.data.beeline.cell_type_separator"]], "download_beeline() (in module regdiffusion.data.beeline)": [[4, "regdiffusion.data.beeline.download_beeline"]], "download_file() (in module regdiffusion.data.utils)": [[4, "regdiffusion.data.utils.download_file"]], "download_regdiffusion_data() (in module regdiffusion.data.microglia)": [[4, "regdiffusion.data.microglia.download_regdiffusion_data"]], "load_atlas_microglia() (in module regdiffusion.data.microglia)": [[4, "regdiffusion.data.microglia.load_atlas_microglia"]], "load_beeline() (in module regdiffusion.data.beeline)": [[4, "regdiffusion.data.beeline.load_beeline"]], "load_beeline_ground_truth() (in module regdiffusion.data.beeline)": [[4, "regdiffusion.data.beeline.load_beeline_ground_truth"]], "load_hammond_microglia() (in module regdiffusion.data.microglia)": [[4, "regdiffusion.data.microglia.load_hammond_microglia"]], "regdiffusion.data": [[4, "module-regdiffusion.data"]], "regdiffusion.data.beeline": [[4, "module-regdiffusion.data.beeline"]], "regdiffusion.data.microglia": [[4, "module-regdiffusion.data.microglia"]], "regdiffusion.data.utils": [[4, "module-regdiffusion.data.utils"]], "block (class in regdiffusion.models.regdiffusion)": [[5, "regdiffusion.models.regdiffusion.Block"]], "geneembeddings (class in regdiffusion.models.regdiffusion)": [[5, "regdiffusion.models.regdiffusion.GeneEmbeddings"]], "i_minus_a() (regdiffusion.models.regdiffusion.regdiffusion method)": [[5, "regdiffusion.models.regdiffusion.RegDiffusion.I_minus_A"]], "regdiffusion (class in regdiffusion.models.regdiffusion)": [[5, "regdiffusion.models.regdiffusion.RegDiffusion"]], "sinusoidalpositionembeddings (class in regdiffusion.models.regdiffusion)": [[5, "regdiffusion.models.regdiffusion.SinusoidalPositionEmbeddings"]], "forward() (regdiffusion.models.regdiffusion.block method)": [[5, "regdiffusion.models.regdiffusion.Block.forward"]], "forward() (regdiffusion.models.regdiffusion.geneembeddings method)": [[5, "regdiffusion.models.regdiffusion.GeneEmbeddings.forward"]], "forward() (regdiffusion.models.regdiffusion.regdiffusion method)": [[5, "regdiffusion.models.regdiffusion.RegDiffusion.forward"]], "forward() (regdiffusion.models.regdiffusion.sinusoidalpositionembeddings method)": [[5, "regdiffusion.models.regdiffusion.SinusoidalPositionEmbeddings.forward"]], "get_adj() (regdiffusion.models.regdiffusion.regdiffusion method)": [[5, "regdiffusion.models.regdiffusion.RegDiffusion.get_adj"]], "get_adj_() (regdiffusion.models.regdiffusion.regdiffusion method)": [[5, "regdiffusion.models.regdiffusion.RegDiffusion.get_adj_"]], "get_gene_emb() (regdiffusion.models.regdiffusion.regdiffusion method)": [[5, "regdiffusion.models.regdiffusion.RegDiffusion.get_gene_emb"]], "get_sampled_adj_() (regdiffusion.models.regdiffusion.regdiffusion method)": [[5, "regdiffusion.models.regdiffusion.RegDiffusion.get_sampled_adj_"]], "regdiffusion.models": [[5, "module-regdiffusion.models"]], "regdiffusion.models.regdiffusion": [[5, "module-regdiffusion.models.regdiffusion"]], "soft_thresholding() (regdiffusion.models.regdiffusion.regdiffusion method)": [[5, "regdiffusion.models.regdiffusion.RegDiffusion.soft_thresholding"]]}})
\ No newline at end of file
+Search.setIndex({"docnames": ["index", "modules", "quick_tour", "regdiffusion", "regdiffusion.data", "regdiffusion.models"], "filenames": ["index.rst", "modules.rst", "quick_tour.md", "regdiffusion.rst", "regdiffusion.data.rst", "regdiffusion.models.rst"], "titles": ["RegDiffusion", "regdiffusion", "Getting Startted with GRN inference using diffusion model", "regdiffusion package", "regdiffusion.data package", "regdiffusion.models package"], "terms": {"i": [0, 2, 3, 4, 5], "veri": [0, 3], "fast": 0, "regulatori": [0, 3], "algorithm": 0, "base": [0, 2, 3, 5], "probabilist": [0, 5], "diffus": [0, 3, 5], "model": [0, 1, 3], "It": [0, 2, 3], "work": 0, "well": 0, "gene": [0, 2, 3, 4, 5], "capabl": [0, 2], "rapidli": 0, "predict": [0, 3], "biolog": [0, 2], "verifi": 0, "link": [0, 2], "from": [0, 2, 3, 4, 5], "larg": [0, 3], "singl": [0, 2, 3, 4, 5], "cell": [0, 2, 3, 4, 5], "rna": 0, "seq": [0, 4], "data": [0, 1, 3], "10": [0, 2, 3], "000": [0, 2], "avail": [0, 4], "pypi": 0, "pip": 0, "thi": [0, 2, 3, 5], "packag": [0, 1, 2], "provid": [0, 2, 3, 5], "offici": 0, "implement": 0, "set": [0, 2, 3, 4], "easi": 0, "us": [0, 3, 5], "companion": 0, "tool": 0, "evalu": [0, 1, 2], "analyz": [0, 3], "visual": [0, 3], "we": [0, 2, 3, 4], "also": [0, 3], "access": 0, "grn": [0, 1], "benchmark": [0, 2, 4], "preprocess": [0, 2], "dataset": [0, 4], "tri": 0, "keep": [0, 2], "top": [0, 3], "level": [0, 3], "interfac": [0, 3], "straightforward": 0, "right": 0, "now": 0, "onli": [0, 2, 3, 4], "consist": 0, "4": [0, 3, 4, 5], "compon": 0, "regdiffusiontrain": [0, 1, 2, 3], "class": [0, 3, 5], "grnevalu": [0, 1, 2, 3], "modul": [0, 1], "you": [0, 2, 3], "can": [0, 2, 3], "train": [0, 1, 2, 3, 5], "log": [0, 1, 2, 3, 4], "transform": [0, 2, 4], "express": [0, 2, 3], "numpi": [0, 2, 3], "arrai": [0, 2, 3], "The": [0, 2, 3, 5], "process": [0, 2], "could": 0, "either": [0, 3, 4], "start": [0, 1, 3], "continu": 0, "method": [0, 2, 3], "export": [0, 3], "get_grn": [0, 1, 3], "contain": [0, 3], "save": [0, 1, 3], "adjac": [0, 2, 3, 5], "matrix": [0, 2, 3, 5], "correspond": [0, 3, 4], "name": [0, 2, 3], "object": [0, 2, 3], "local": [0, 3], "hdf5": [0, 3], "file": [0, 3], "to_hdf5": [0, 1, 3], "reload": 0, "read_hdf5": [0, 1, 3], "function": [0, 3, 5], "come": [0, 2, 3], "region": 0, "For": [0, 2, 3, 5], "exampl": [0, 2, 3], "visualize_local_neighborhood": [0, 1, 3], "gener": [0, 2, 3], "similar": 0, "plot": 0, "paper": [0, 2, 5], "extract": 0, "underli": 0, "list": [0, 3, 5], "extract_node_2hop_neighborhood": [0, 1, 3], "ground": [0, 2, 3, 4], "truth": [0, 2, 3, 4], "relationship": 0, "often": 0, "exist": 0, "edg": [0, 3], "valu": [0, 3, 5], "ar": [0, 2, 3, 5], "design": 0, "fill": 0, "gap": 0, "support": [0, 3], "common": 0, "metric": [0, 3], "auroc": [0, 3], "aupr": [0, 3], "ratio": 0, "ep": [0, 3], "epr": [0, 3], "includ": [0, 2, 3], "beelin": [0, 1, 2, 3], "our": [0, 2, 5], "mous": [0, 2, 4], "microglia": [0, 1, 2, 3], "after": 0, "converg": [0, 2], "what": 0, "get": 0, "simpli": [0, 2, 3], "an": [0, 2, 3], "when": [0, 2, 3], "have": [0, 3], "thousand": 0, "ten": 0, "": [0, 3], "difficult": 0, "scale": 0, "In": [0, 2, 3], "propos": [0, 2], "wai": [0, 3], "focus": 0, "care": [0, 5], "most": [0, 2, 3], "check": [0, 2], "out": [0, 2], "tutori": [0, 2], "left": 0, "side": 0, "how": 0, "perform": [0, 2, 3, 5], "analysi": 0, "like": 0, "one": [0, 5], "did": 0, "interact": 0, "15": 0, "take": [0, 3, 5], "under": 0, "5": [0, 3, 5], "minut": [0, 2], "a100": [0, 2], "gpu": [0, 2], "contrast": 0, "previou": [0, 2], "vae": 0, "would": [0, 5], "more": 0, "than": [0, 3], "hour": 0, "same": [0, 2, 3], "devic": [0, 2, 3], "even": 0, "don": 0, "t": [0, 3, 5], "those": 0, "fanci": 0, "card": [0, 2], "still": 0, "roughli": 0, "3": [0, 3, 5], "mid": 0, "rang": 0, "12": 0, "core": 0, "cpu": 0, "pleas": [0, 5], "consid": [0, 3], "cite": 0, "found": 0, "your": [0, 2, 3], "subpackag": 1, "submodul": 1, "util": [1, 3], "content": 1, "extract_node_neighbor": [1, 3], "extract_node_neighbors_as_indic": [1, 3], "extract_node_sourc": [1, 3], "extract_node_sources_as_indic": [1, 3], "extract_node_target": [1, 3], "extract_node_targets_as_indic": [1, 3], "generate_adj_list": [1, 3], "logger": 1, "lightlogg": [1, 3], "check_early_stop": [1, 3], "finish": [1, 2, 3], "set_config": [1, 3], "to_df": [1, 3], "load_logg": [1, 3], "trainer": [1, 2], "forward_pass": [1, 3], "get_adj": [1, 2, 3, 5], "training_curv": [1, 3], "linear_beta_schedul": [1, 3], "power_beta_schedul": [1, 3], "ha": [2, 4], "been": [2, 4], "wide": 2, "ai": 2, "especi": 2, "vision": 2, "domain": 2, "regdiffus": 2, "compar": 2, "complet": [2, 3], "within": [2, 3, 5], "fraction": 2, "time": [2, 3, 5], "yield": 2, "better": 2, "result": 2, "run": [2, 3, 5], "insight": 2, "network": [2, 3], "need": [2, 3, 5], "python": [2, 3], "acceler": 2, "speed": 2, "mai": [2, 3], "want": 2, "latest": 2, "cuda": [2, 3], "instal": 2, "import": 2, "rd": 2, "input": 2, "where": [2, 3, 4], "column": [2, 3, 4], "row": [2, 3, 4], "expect": [2, 3, 5], "among": [2, 4], "depend": 2, "hardwar": 2, "so": 2, "appli": 2, "heavi": 2, "filter": 2, "remov": 2, "all": [2, 3, 5], "total": 2, "raw": 2, "count": [2, 4], "0": [2, 3, 4, 5], "hammond": [2, 4], "male": [2, 4], "adult": 2, "mice": [2, 4], "anoth": 2, "label": [2, 3], "subset": 2, "cerebellum": [2, 4], "atla": [2, 4], "project": 2, "here": 2, "mesc": [2, 4], "embryon": 2, "stem": 2, "421": 2, "1": [2, 3, 5], "620": 2, "If": [2, 3, 4, 5], "see": [2, 3], "larger": 2, "14": 2, "8": [2, 3], "other": [2, 3], "bl_dt": 2, "bl_gt": 2, "load_beelin": [2, 3, 4], "benchmark_data": [2, 4], "benchmark_set": [2, 4], "1000_string": [2, 4], "give": 2, "tupl": [2, 4], "first": [2, 4, 5], "element": [2, 4], "anndata": 2, "experess": 2, "second": [2, 4], "string": 2, "case": [2, 3], "recommend": 2, "dure": [2, 5], "loss": 2, "averag": 2, "amount": 2, "chang": 2, "progress": 2, "bar": 2, "step": [2, 3, 4, 5], "n": 2, "zero": [2, 3], "By": 2, "default": [2, 3, 5], "iter": 2, "should": [2, 5], "suffici": 2, "afterward": [2, 5], "call": [2, 5], "again": 2, "desir": 2, "number": [2, 5], "rd_trainer": 2, "x": [2, 5], "experi": [2, 3], "avaiabl": 2, "test": 2, "up": 2, "both": 2, "note": [2, 3], "order": [2, 3], "tabl": 2, "var_nam": 2, "inferred_adj": 2, "facilit": 2, "downstream": 2, "analys": 2, "defin": [2, 5], "cell_type_separ": [3, 4], "download_beelin": [3, 4], "load_beeline_ground_truth": [3, 4], "download_regdiffusion_data": [3, 4], "load_atlas_microglia": [3, 4], "load_hammond_microglia": [3, 4], "download_fil": [3, 4], "block": [3, 5], "forward": [3, 5], "geneembed": [3, 5], "i_minus_a": [3, 5], "get_adj_": [3, 5], "get_gene_emb": [3, 5], "get_sampled_adj_": [3, 5], "soft_threshold": [3, 5], "sinusoidalpositionembed": [3, 5], "ground_truth": 3, "gene_nam": 3, "auprr": 3, "sourc": [3, 4, 5], "A": [3, 5], "infer": [3, 5], "paramet": [3, 4, 5], "np": 3, "ndarrai": 3, "2d": 3, "hold": 3, "each": 3, "target": 3, "node": 3, "b": 3, "c": 3, "1d": 3, "make": 3, "sure": 3, "current": 3, "adj_matrix": 3, "tf_name": 3, "none": [3, 5], "top_gene_percentil": 3, "int": [3, 5], "between": [3, 5], "transcript": 3, "factor": 3, "shape": 3, "mani": 3, "tf": 3, "specifi": [3, 5], "squar": 3, "weight": 3, "probabl": 3, "float": [3, 5], "To": 3, "creat": 3, "least": 3, "two": 3, "thing": 3, "further": 3, "format": 3, "load": [3, 4], "space": 3, "concern": 3, "calcul": 3, "cutoff": 3, "point": 3, "everi": [3, 5], "whose": 3, "absolut": 3, "below": 3, "later": 3, "spars": 3, "reduc": 3, "requir": 3, "option": 3, "k": 3, "kept": 3, "str": [3, 4], "20": 3, "datafram": 3, "panda": 3, "neighborhood": 3, "2": 3, "hop": 3, "around": 3, "select": [3, 4], "inspect": 3, "node_s": 3, "size": [3, 5], "direct": 3, "neighbor": 3, "sort": 3, "dict": 3, "dictionari": 3, "slightli": 3, "faster": 3, "version": 3, "file_path": [3, 4], "as_spars": 3, "bool": 3, "fals": 3, "prefer": 3, "path": 3, "whether": 3, "edge_width": 3, "font_siz": 3, "30": 3, "node_group_dict": 3, "cdn_resourc": 3, "remot": 3, "notebook": 3, "true": [3, 4], "vi": 3, "j": 3, "width": 3, "1st": 3, "2nd": 3, "font": 3, "kei": 3, "being": 3, "group": 3, "color": 3, "resourc": 3, "boolean": 3, "indic": 3, "happen": 3, "jupyt": 3, "read": 3, "document": 3, "detail": [3, 5], "result_dir": 3, "result_log": 3, "log_dat": 3, "lightweight": 3, "inspir": 3, "w": 3, "environ": 3, "multipl": 3, "separ": 3, "dir": 3, "date": 3, "custom": 3, "subdirectori": 3, "variabl": 3, "item": 3, "save_now": 3, "end": [3, 4], "dump": 3, "stream": 3, "memori": [3, 4], "log_dict": 3, "which": 3, "config": 3, "configur": 3, "futur": 3, "experiment": 3, "hyper": 3, "new": 3, "tidi": 3, "convert": 3, "df": 3, "json": 3, "exp_arrai": 3, "cell_typ": 3, "5000": 3, "start_nois": 3, "0001": 3, "end_nois": 3, "02": 3, "lr_nn": 3, "001": 3, "lr_adj": 3, "weight_decay_nn": 3, "weight_decay_adj": 3, "01": 3, "sparse_loss_coef": 3, "25": 3, "adj_dropout": [3, 5], "batch_siz": 3, "128": 3, "n_step": 3, "1000": 3, "train_split": 3, "train_split_se": 3, "123": 3, "eval_on_n_step": 3, "100": 3, "time_dim": [3, 5], "64": 3, "celltype_dim": [3, 5], "hidden_dim": [3, 5], "16": [3, 5], "init_coef": [3, 5], "compil": 3, "initi": [3, 5], "x_0": 3, "pass": [3, 5], "torch": 3, "floattensor": 3, "tensor": 3, "longtensor": 3, "mean_schedul": 3, "mean": 3, "schedul": 3, "std_schedul": 3, "std": 3, "timestep": 3, "power": 3, "analyt": 3, "sc_data": 4, "cell_type_element_indic": 4, "sep": 4, "_": 4, "save_dir": 4, "remove_zip": 4, "data_dir": 4, "hesc": 4, "500_string": 4, "download": 4, "necessari": 4, "root": 4, "folder": 4, "locat": 4, "choos": 4, "hhep": 4, "mdc": 4, "mhsc": 4, "gm": 4, "l": 4, "500_non": 4, "chip": 4, "1000_non": 4, "500_chip": 4, "1000_chip": 4, "500_lofgof": 4, "1000_lofgof": 4, "lofgof": 4, "return": 4, "scanpi": 4, "type": [4, 5], "file_nam": 4, "scp795": 4, "http": 4, "singlecel": 4, "broadinstitut": 4, "org": 4, "single_cel": 4, "studi": 4, "transcriptom": 4, "summari": 4, "just": 4, "p100": 4, "url": 4, "chunk_siz": 4, "1024": 4, "in_dim": 5, "out_dim": 5, "ct": 5, "comput": 5, "overridden": 5, "subclass": 5, "although": 5, "recip": 5, "instanc": 5, "instead": 5, "sinc": 5, "former": 5, "regist": 5, "hook": 5, "while": 5, "latter": 5, "silent": 5, "ignor": 5, "them": 5, "n_gene": 5, "gene_dim": 5, "n_celltyp": 5, "architectur": 5, "refer": 5, "nois": 5, "knowledg": 5, "neural": 5, "dimens": 5, "embed": 5, "celltyp": 5, "integ": 5, "hidden": 5, "layer": 5, "percentag": 5, "drop": 5, "coeffici": 5, "multipli": 5, "regul": 5, "norm": 5, "tau": 5, "dim": 5, "theta": 5, "10000": 5}, "objects": {"": [[3, 0, 0, "-", "regdiffusion"]], "regdiffusion": [[3, 1, 1, "", "GRN"], [3, 1, 1, "", "GRNEvaluator"], [3, 1, 1, "", "LightLogger"], [3, 1, 1, "", "RegDiffusionTrainer"], [4, 0, 0, "-", "data"], [3, 0, 0, "-", "evaluator"], [3, 0, 0, "-", "grn"], [3, 3, 1, "", "load_logger"], [3, 0, 0, "-", "logger"], [5, 0, 0, "-", "models"], [3, 3, 1, "", "read_hdf5"], [3, 0, 0, "-", "trainer"]], "regdiffusion.GRN": [[3, 2, 1, "", "extract_node_2hop_neighborhood"], [3, 2, 1, "", "extract_node_neighbors"], [3, 2, 1, "", "extract_node_neighbors_as_indices"], [3, 2, 1, "", "extract_node_sources"], [3, 2, 1, "", "extract_node_sources_as_indices"], [3, 2, 1, "", "extract_node_targets"], [3, 2, 1, "", "extract_node_targets_as_indices"], [3, 2, 1, "", "generate_adj_list"], [3, 2, 1, "", "to_hdf5"], [3, 2, 1, "", "visualize_local_neighborhood"]], "regdiffusion.GRNEvaluator": [[3, 2, 1, "", "evaluate"]], "regdiffusion.LightLogger": [[3, 2, 1, "", "check_early_stopping"], [3, 2, 1, "", "finish"], [3, 2, 1, "", "log"], [3, 2, 1, "", "save"], [3, 2, 1, "", "set_configs"], [3, 2, 1, "", "start"], [3, 2, 1, "", "to_df"]], "regdiffusion.RegDiffusionTrainer": [[3, 2, 1, "", "forward_pass"], [3, 2, 1, "", "get_adj"], [3, 2, 1, "", "get_grn"], [3, 2, 1, "", "train"], [3, 2, 1, "", "training_curves"]], "regdiffusion.data": [[4, 0, 0, "-", "beeline"], [4, 0, 0, "-", "microglia"], [4, 0, 0, "-", "utils"]], "regdiffusion.data.beeline": [[4, 3, 1, "", "cell_type_separator"], [4, 3, 1, "", "download_beeline"], [4, 3, 1, "", "load_beeline"], [4, 3, 1, "", "load_beeline_ground_truth"]], "regdiffusion.data.microglia": [[4, 3, 1, "", "download_regdiffusion_data"], [4, 3, 1, "", "load_atlas_microglia"], [4, 3, 1, "", "load_hammond_microglia"]], "regdiffusion.data.utils": [[4, 3, 1, "", "download_file"]], "regdiffusion.evaluator": [[3, 1, 1, "", "GRNEvaluator"]], "regdiffusion.evaluator.GRNEvaluator": [[3, 2, 1, "", "evaluate"]], "regdiffusion.grn": [[3, 1, 1, "", "GRN"], [3, 3, 1, "", "read_hdf5"]], "regdiffusion.grn.GRN": [[3, 2, 1, "", "extract_node_2hop_neighborhood"], [3, 2, 1, "", "extract_node_neighbors"], [3, 2, 1, "", "extract_node_neighbors_as_indices"], [3, 2, 1, "", "extract_node_sources"], [3, 2, 1, "", "extract_node_sources_as_indices"], [3, 2, 1, "", "extract_node_targets"], [3, 2, 1, "", "extract_node_targets_as_indices"], [3, 2, 1, "", "generate_adj_list"], [3, 2, 1, "", "to_hdf5"], [3, 2, 1, "", "visualize_local_neighborhood"]], "regdiffusion.logger": [[3, 1, 1, "", "LightLogger"], [3, 3, 1, "", "load_logger"]], "regdiffusion.logger.LightLogger": [[3, 2, 1, "", "check_early_stopping"], [3, 2, 1, "", "finish"], [3, 2, 1, "", "log"], [3, 2, 1, "", "save"], [3, 2, 1, "", "set_configs"], [3, 2, 1, "", "start"], [3, 2, 1, "", "to_df"]], "regdiffusion.models": [[5, 0, 0, "-", "regdiffusion"]], "regdiffusion.models.regdiffusion": [[5, 1, 1, "", "Block"], [5, 1, 1, "", "GeneEmbeddings"], [5, 1, 1, "", "RegDiffusion"], [5, 1, 1, "", "SinusoidalPositionEmbeddings"]], "regdiffusion.models.regdiffusion.Block": [[5, 2, 1, "", "forward"]], "regdiffusion.models.regdiffusion.GeneEmbeddings": [[5, 2, 1, "", "forward"]], "regdiffusion.models.regdiffusion.RegDiffusion": [[5, 2, 1, "", "I_minus_A"], [5, 2, 1, "", "forward"], [5, 2, 1, "", "get_adj"], [5, 2, 1, "", "get_adj_"], [5, 2, 1, "", "get_gene_emb"], [5, 2, 1, "", "get_sampled_adj_"], [5, 2, 1, "", "soft_thresholding"]], "regdiffusion.models.regdiffusion.SinusoidalPositionEmbeddings": [[5, 2, 1, "", "forward"]], "regdiffusion.trainer": [[3, 1, 1, "", "RegDiffusionTrainer"], [3, 3, 1, "", "linear_beta_schedule"], [3, 3, 1, "", "power_beta_schedule"]], "regdiffusion.trainer.RegDiffusionTrainer": [[3, 2, 1, "", "forward_pass"], [3, 2, 1, "", "get_adj"], [3, 2, 1, "", "get_grn"], [3, 2, 1, "", "train"], [3, 2, 1, "", "training_curves"]]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:function"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "function", "Python function"]}, "titleterms": {"regdiffus": [0, 1, 3, 4, 5], "instal": 0, "quick": 0, "tour": 0, "understand": 0, "infer": [0, 2], "network": 0, "speed": 0, "citat": 0, "get": 2, "start": 2, "grn": [2, 3], "us": 2, "diffus": 2, "model": [2, 5], "requir": 2, "data": [2, 4], "load": 2, "packag": [3, 4, 5], "subpackag": 3, "submodul": [3, 4, 5], "evalu": 3, "modul": [3, 4, 5], "logger": 3, "trainer": 3, "content": [3, 4, 5], "beelin": 4, "microglia": 4, "util": 4}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1, "sphinx": 60}, "alltitles": {"RegDiffusion": [[0, "regdiffusion"]], "Installation": [[0, "installation"]], "Quick Tour": [[0, "quick-tour"]], "Understanding the Inferred Networks": [[0, "understanding-the-inferred-networks"]], "Inference Speed": [[0, "inference-speed"]], "Citation": [[0, "citation"]], "regdiffusion": [[1, "regdiffusion"]], "Getting Startted with GRN inference using diffusion model": [[2, "getting-startted-with-grn-inference-using-diffusion-model"]], "Requirements": [[2, "requirements"]], "Data Loading": [[2, "data-loading"]], "regdiffusion package": [[3, "regdiffusion-package"]], "Subpackages": [[3, "subpackages"]], "Submodules": [[3, "submodules"], [4, "submodules"], [5, "submodules"]], "regdiffusion.evaluator module": [[3, "module-regdiffusion.evaluator"]], "regdiffusion.grn module": [[3, "module-regdiffusion.grn"]], "regdiffusion.logger module": [[3, "module-regdiffusion.logger"]], "regdiffusion.trainer module": [[3, "module-regdiffusion.trainer"]], "Module contents": [[3, "module-regdiffusion"], [4, "module-regdiffusion.data"], [5, "module-regdiffusion.models"]], "regdiffusion.data package": [[4, "regdiffusion-data-package"]], "regdiffusion.data.beeline module": [[4, "module-regdiffusion.data.beeline"]], "regdiffusion.data.microglia module": [[4, "module-regdiffusion.data.microglia"]], "regdiffusion.data.utils module": [[4, "module-regdiffusion.data.utils"]], "regdiffusion.models package": [[5, "regdiffusion-models-package"]], "regdiffusion.models.regdiffusion module": [[5, "module-regdiffusion.models.regdiffusion"]]}, "indexentries": {"grn (class in regdiffusion)": [[3, "regdiffusion.GRN"]], "grn (class in regdiffusion.grn)": [[3, "regdiffusion.grn.GRN"]], "grnevaluator (class in regdiffusion)": [[3, "regdiffusion.GRNEvaluator"]], "grnevaluator (class in regdiffusion.evaluator)": [[3, "regdiffusion.evaluator.GRNEvaluator"]], "lightlogger (class in regdiffusion)": [[3, "regdiffusion.LightLogger"]], "lightlogger (class in regdiffusion.logger)": [[3, "regdiffusion.logger.LightLogger"]], "regdiffusiontrainer (class in regdiffusion)": [[3, "regdiffusion.RegDiffusionTrainer"]], "regdiffusiontrainer (class in regdiffusion.trainer)": [[3, "regdiffusion.trainer.RegDiffusionTrainer"]], "check_early_stopping() (regdiffusion.lightlogger method)": [[3, "regdiffusion.LightLogger.check_early_stopping"]], "check_early_stopping() (regdiffusion.logger.lightlogger method)": [[3, "regdiffusion.logger.LightLogger.check_early_stopping"]], "evaluate() (regdiffusion.grnevaluator method)": [[3, "regdiffusion.GRNEvaluator.evaluate"]], "evaluate() (regdiffusion.evaluator.grnevaluator method)": [[3, "regdiffusion.evaluator.GRNEvaluator.evaluate"]], "extract_node_2hop_neighborhood() (regdiffusion.grn method)": [[3, "regdiffusion.GRN.extract_node_2hop_neighborhood"]], "extract_node_2hop_neighborhood() (regdiffusion.grn.grn method)": [[3, "regdiffusion.grn.GRN.extract_node_2hop_neighborhood"]], "extract_node_neighbors() (regdiffusion.grn method)": [[3, "regdiffusion.GRN.extract_node_neighbors"]], "extract_node_neighbors() (regdiffusion.grn.grn method)": [[3, "regdiffusion.grn.GRN.extract_node_neighbors"]], "extract_node_neighbors_as_indices() (regdiffusion.grn method)": [[3, "regdiffusion.GRN.extract_node_neighbors_as_indices"]], "extract_node_neighbors_as_indices() (regdiffusion.grn.grn method)": [[3, "regdiffusion.grn.GRN.extract_node_neighbors_as_indices"]], "extract_node_sources() (regdiffusion.grn method)": [[3, "regdiffusion.GRN.extract_node_sources"]], "extract_node_sources() (regdiffusion.grn.grn method)": [[3, "regdiffusion.grn.GRN.extract_node_sources"]], "extract_node_sources_as_indices() (regdiffusion.grn method)": [[3, "regdiffusion.GRN.extract_node_sources_as_indices"]], "extract_node_sources_as_indices() (regdiffusion.grn.grn method)": [[3, "regdiffusion.grn.GRN.extract_node_sources_as_indices"]], "extract_node_targets() (regdiffusion.grn method)": [[3, "regdiffusion.GRN.extract_node_targets"]], "extract_node_targets() (regdiffusion.grn.grn method)": [[3, "regdiffusion.grn.GRN.extract_node_targets"]], "extract_node_targets_as_indices() (regdiffusion.grn method)": [[3, "regdiffusion.GRN.extract_node_targets_as_indices"]], "extract_node_targets_as_indices() (regdiffusion.grn.grn method)": [[3, "regdiffusion.grn.GRN.extract_node_targets_as_indices"]], "finish() (regdiffusion.lightlogger method)": [[3, "regdiffusion.LightLogger.finish"]], "finish() (regdiffusion.logger.lightlogger method)": [[3, "regdiffusion.logger.LightLogger.finish"]], "forward_pass() (regdiffusion.regdiffusiontrainer method)": [[3, "regdiffusion.RegDiffusionTrainer.forward_pass"]], "forward_pass() (regdiffusion.trainer.regdiffusiontrainer method)": [[3, "regdiffusion.trainer.RegDiffusionTrainer.forward_pass"]], "generate_adj_list() (regdiffusion.grn method)": [[3, "regdiffusion.GRN.generate_adj_list"]], "generate_adj_list() (regdiffusion.grn.grn method)": [[3, "regdiffusion.grn.GRN.generate_adj_list"]], "get_adj() (regdiffusion.regdiffusiontrainer method)": [[3, "regdiffusion.RegDiffusionTrainer.get_adj"]], "get_adj() (regdiffusion.trainer.regdiffusiontrainer method)": [[3, "regdiffusion.trainer.RegDiffusionTrainer.get_adj"]], "get_grn() (regdiffusion.regdiffusiontrainer method)": [[3, "regdiffusion.RegDiffusionTrainer.get_grn"]], "get_grn() (regdiffusion.trainer.regdiffusiontrainer method)": [[3, "regdiffusion.trainer.RegDiffusionTrainer.get_grn"]], "linear_beta_schedule() (in module regdiffusion.trainer)": [[3, "regdiffusion.trainer.linear_beta_schedule"]], "load_logger() (in module regdiffusion)": [[3, "regdiffusion.load_logger"]], "load_logger() (in module regdiffusion.logger)": [[3, "regdiffusion.logger.load_logger"]], "log() (regdiffusion.lightlogger method)": [[3, "regdiffusion.LightLogger.log"]], "log() (regdiffusion.logger.lightlogger method)": [[3, "regdiffusion.logger.LightLogger.log"]], "module": [[3, "module-regdiffusion"], [3, "module-regdiffusion.evaluator"], [3, "module-regdiffusion.grn"], [3, "module-regdiffusion.logger"], [3, "module-regdiffusion.trainer"], [4, "module-regdiffusion.data"], [4, "module-regdiffusion.data.beeline"], [4, "module-regdiffusion.data.microglia"], [4, "module-regdiffusion.data.utils"], [5, "module-regdiffusion.models"], [5, "module-regdiffusion.models.regdiffusion"]], "power_beta_schedule() (in module regdiffusion.trainer)": [[3, "regdiffusion.trainer.power_beta_schedule"]], "read_hdf5() (in module regdiffusion)": [[3, "regdiffusion.read_hdf5"]], "read_hdf5() (in module regdiffusion.grn)": [[3, "regdiffusion.grn.read_hdf5"]], "regdiffusion": [[3, "module-regdiffusion"]], "regdiffusion.evaluator": [[3, "module-regdiffusion.evaluator"]], "regdiffusion.grn": [[3, "module-regdiffusion.grn"]], "regdiffusion.logger": [[3, "module-regdiffusion.logger"]], "regdiffusion.trainer": [[3, "module-regdiffusion.trainer"]], "save() (regdiffusion.lightlogger method)": [[3, "regdiffusion.LightLogger.save"]], "save() (regdiffusion.logger.lightlogger method)": [[3, "regdiffusion.logger.LightLogger.save"]], "set_configs() (regdiffusion.lightlogger method)": [[3, "regdiffusion.LightLogger.set_configs"]], "set_configs() (regdiffusion.logger.lightlogger method)": [[3, "regdiffusion.logger.LightLogger.set_configs"]], "start() (regdiffusion.lightlogger method)": [[3, "regdiffusion.LightLogger.start"]], "start() (regdiffusion.logger.lightlogger method)": [[3, "regdiffusion.logger.LightLogger.start"]], "to_df() (regdiffusion.lightlogger method)": [[3, "regdiffusion.LightLogger.to_df"]], "to_df() (regdiffusion.logger.lightlogger method)": [[3, "regdiffusion.logger.LightLogger.to_df"]], "to_hdf5() (regdiffusion.grn method)": [[3, "regdiffusion.GRN.to_hdf5"]], "to_hdf5() (regdiffusion.grn.grn method)": [[3, "regdiffusion.grn.GRN.to_hdf5"]], "train() (regdiffusion.regdiffusiontrainer method)": [[3, "regdiffusion.RegDiffusionTrainer.train"]], "train() (regdiffusion.trainer.regdiffusiontrainer method)": [[3, "regdiffusion.trainer.RegDiffusionTrainer.train"]], "training_curves() (regdiffusion.regdiffusiontrainer method)": [[3, "regdiffusion.RegDiffusionTrainer.training_curves"]], "training_curves() (regdiffusion.trainer.regdiffusiontrainer method)": [[3, "regdiffusion.trainer.RegDiffusionTrainer.training_curves"]], "visualize_local_neighborhood() (regdiffusion.grn method)": [[3, "regdiffusion.GRN.visualize_local_neighborhood"]], "visualize_local_neighborhood() (regdiffusion.grn.grn method)": [[3, "regdiffusion.grn.GRN.visualize_local_neighborhood"]], "cell_type_separator() (in module regdiffusion.data.beeline)": [[4, "regdiffusion.data.beeline.cell_type_separator"]], "download_beeline() (in module regdiffusion.data.beeline)": [[4, "regdiffusion.data.beeline.download_beeline"]], "download_file() (in module regdiffusion.data.utils)": [[4, "regdiffusion.data.utils.download_file"]], "download_regdiffusion_data() (in module regdiffusion.data.microglia)": [[4, "regdiffusion.data.microglia.download_regdiffusion_data"]], "load_atlas_microglia() (in module regdiffusion.data.microglia)": [[4, "regdiffusion.data.microglia.load_atlas_microglia"]], "load_beeline() (in module regdiffusion.data.beeline)": [[4, "regdiffusion.data.beeline.load_beeline"]], "load_beeline_ground_truth() (in module regdiffusion.data.beeline)": [[4, "regdiffusion.data.beeline.load_beeline_ground_truth"]], "load_hammond_microglia() (in module regdiffusion.data.microglia)": [[4, "regdiffusion.data.microglia.load_hammond_microglia"]], "regdiffusion.data": [[4, "module-regdiffusion.data"]], "regdiffusion.data.beeline": [[4, "module-regdiffusion.data.beeline"]], "regdiffusion.data.microglia": [[4, "module-regdiffusion.data.microglia"]], "regdiffusion.data.utils": [[4, "module-regdiffusion.data.utils"]], "block (class in regdiffusion.models.regdiffusion)": [[5, "regdiffusion.models.regdiffusion.Block"]], "geneembeddings (class in regdiffusion.models.regdiffusion)": [[5, "regdiffusion.models.regdiffusion.GeneEmbeddings"]], "i_minus_a() (regdiffusion.models.regdiffusion.regdiffusion method)": [[5, "regdiffusion.models.regdiffusion.RegDiffusion.I_minus_A"]], "regdiffusion (class in regdiffusion.models.regdiffusion)": [[5, "regdiffusion.models.regdiffusion.RegDiffusion"]], "sinusoidalpositionembeddings (class in regdiffusion.models.regdiffusion)": [[5, "regdiffusion.models.regdiffusion.SinusoidalPositionEmbeddings"]], "forward() (regdiffusion.models.regdiffusion.block method)": [[5, "regdiffusion.models.regdiffusion.Block.forward"]], "forward() (regdiffusion.models.regdiffusion.geneembeddings method)": [[5, "regdiffusion.models.regdiffusion.GeneEmbeddings.forward"]], "forward() (regdiffusion.models.regdiffusion.regdiffusion method)": [[5, "regdiffusion.models.regdiffusion.RegDiffusion.forward"]], "forward() (regdiffusion.models.regdiffusion.sinusoidalpositionembeddings method)": [[5, "regdiffusion.models.regdiffusion.SinusoidalPositionEmbeddings.forward"]], "get_adj() (regdiffusion.models.regdiffusion.regdiffusion method)": [[5, "regdiffusion.models.regdiffusion.RegDiffusion.get_adj"]], "get_adj_() (regdiffusion.models.regdiffusion.regdiffusion method)": [[5, "regdiffusion.models.regdiffusion.RegDiffusion.get_adj_"]], "get_gene_emb() (regdiffusion.models.regdiffusion.regdiffusion method)": [[5, "regdiffusion.models.regdiffusion.RegDiffusion.get_gene_emb"]], "get_sampled_adj_() (regdiffusion.models.regdiffusion.regdiffusion method)": [[5, "regdiffusion.models.regdiffusion.RegDiffusion.get_sampled_adj_"]], "regdiffusion.models": [[5, "module-regdiffusion.models"]], "regdiffusion.models.regdiffusion": [[5, "module-regdiffusion.models.regdiffusion"]], "soft_thresholding() (regdiffusion.models.regdiffusion.regdiffusion method)": [[5, "regdiffusion.models.regdiffusion.RegDiffusion.soft_thresholding"]]}})
\ No newline at end of file