CONTAINERS
torchvision |
|
---|---|
Builds | |
Requires | L4T >=32.6 |
Dependencies | build-essential cuda cudnn python tensorrt numpy cmake onnx pytorch |
Dependants | audiocraft auto_awq auto_gptq awq awq:dev bitsandbytes efficientvit gptq-for-llama jetson-inference l4t-diffusion l4t-ml l4t-pytorch l4t-text-generation llava local_llm minigpt4 mlc:3feed05 mlc:3feed05-builder mlc:51fb0f4 mlc:51fb0f4-builder mlc:5584cac mlc:5584cac-builder mlc:9bf5723 mlc:9bf5723-builder mlc:dev mlc:dev-builder nanodb nanoowl nanosam nemo optimum sam stable-diffusion stable-diffusion-webui tam text-generation-inference text-generation-webui:1.7 text-generation-webui:6a7cd01 text-generation-webui:main torch2trt torch_tensorrt transformers transformers:git transformers:nvgpt whisperx |
Dockerfile | Dockerfile |
Images | dustynv/torchvision:r32.7.1 (2023-12-14, 1.1GB) dustynv/torchvision:r35.2.1 (2023-12-11, 5.5GB) dustynv/torchvision:r35.3.1 (2023-12-14, 5.5GB) dustynv/torchvision:r35.4.1 (2023-11-05, 5.4GB) |
CONTAINER IMAGES
Repository/Tag | Date | Arch | Size |
---|---|---|---|
dustynv/torchvision:r32.7.1 |
2023-12-14 |
arm64 |
1.1GB |
dustynv/torchvision:r35.2.1 |
2023-12-11 |
arm64 |
5.5GB |
dustynv/torchvision:r35.3.1 |
2023-12-14 |
arm64 |
5.5GB |
dustynv/torchvision:r35.4.1 |
2023-11-05 |
arm64 |
5.4GB |
Container images are compatible with other minor versions of JetPack/L4T:
• L4T R32.7 containers can run on other versions of L4T R32.7 (JetPack 4.6+)
• L4T R35.x containers can run on other versions of L4T R35.x (JetPack 5.1+)
RUN CONTAINER
To start the container, you can use the run.sh
/autotag
helpers or manually put together a docker run
command:
# automatically pull or build a compatible container image
./run.sh $(./autotag torchvision)
# or explicitly specify one of the container images above
./run.sh dustynv/torchvision:r35.3.1
# or if using 'docker run' (specify image and mounts/ect)
sudo docker run --runtime nvidia -it --rm --network=host dustynv/torchvision:r35.3.1
run.sh
forwards arguments todocker run
with some defaults added (like--runtime nvidia
, mounts a/data
cache, and detects devices)
autotag
finds a container image that's compatible with your version of JetPack/L4T - either locally, pulled from a registry, or by building it.
To mount your own directories into the container, use the -v
or --volume
flags:
./run.sh -v /path/on/host:/path/in/container $(./autotag torchvision)
To launch the container running a command, as opposed to an interactive shell:
./run.sh $(./autotag torchvision) my_app --abc xyz
You can pass any options to run.sh
that you would to docker run
, and it'll print out the full command that it constructs before executing it.
BUILD CONTAINER
If you use autotag
as shown above, it'll ask to build the container for you if needed. To manually build it, first do the system setup, then run:
./build.sh torchvision
The dependencies from above will be built into the container, and it'll be tested during. See ./build.sh --help
for build options.