-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathssdh.py
278 lines (227 loc) · 8.4 KB
/
ssdh.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
from scipy.spatial.distance import pdist, squareform
from scipy.stats import norm
from loguru import logger
from model_loader import load_model
from evaluate import mean_average_precision
def train(train_dataloader,
query_dataloader,
retrieval_dataloader,
multi_labels,
code_length,
num_features,
alpha,
beta,
max_iter,
arch,
lr,
device,
verbose,
evaluate_interval,
snapshot_interval,
topk,
checkpoint=None,
):
"""
Training model.
Args
train_dataloader(torch.evaluate.data.DataLoader): Training data loader.
query_dataloader(torch.evaluate.data.DataLoader): Query data loader.
retrieval_dataloader(torch.evaluate.data.DataLoader): Retrieval data loader.
multi_labels(bool): True, if dataset is multi-labels.
code_length(int): Hash code length.
num_features(int): Number of features.
alpha, beta(float): Hyper-parameters.
max_iter(int): Number of iterations.
arch(str): Model name.
lr(float): Learning rate.
device(torch.device): GPU or CPU.
verbose(bool): Print log.
evaluate_interval(int): Interval of evaluation.
snapshot_interval(int): Interval of snapshot.
topk(int): Calculate top k data points map.
checkpoint(str, optional): Paht of checkpoint.
Returns
None
"""
# Model, optimizer, criterion
model = load_model(arch, code_length)
model.to(device)
optimizer = optim.SGD(model.parameters(), lr=lr, momentum=0.9, weight_decay=1e-5)
criterion = SSDH_Loss()
# Resume
resume_it = 0
if checkpoint:
optimizer, resume_it = model.load_snapshot(checkpoint, optimizer)
logger.info('[resume:{}][iteration:{}]'.format(checkpoint, resume_it+1))
# Extract features
features = extract_features(model, train_dataloader, num_features, device, verbose)
# Generate similarity matrix
S = generate_similarity_matrix(features, alpha, beta).to(device)
# Training
model.train()
for epoch in range(resume_it, max_iter):
n_batch = len(train_dataloader)
for i, (data, _, index) in enumerate(train_dataloader):
# Current iteration
cur_iter = epoch * n_batch + i + 1
data = data.to(device)
optimizer.zero_grad()
v = model(data)
H = v @ v.t() / code_length
targets = S[index, :][:, index]
loss = criterion(H, targets)
loss.backward()
optimizer.step()
# Print log
if verbose:
logger.debug('[epoch:{}][Batch:{}/{}][loss:{:.4f}]'.format(epoch+1, i+1, n_batch, loss.item()))
# Evaluate
if cur_iter % evaluate_interval == 0:
mAP = evaluate(model,
query_dataloader,
retrieval_dataloader,
code_length,
device,
topk,
multi_labels,
)
logger.info('[iteration:{}][map:{:.4f}]'.format(cur_iter, mAP))
# Save snapshot
if cur_iter % snapshot_interval == snapshot_interval - 1:
model.snapshot(cur_iter, optimizer)
logger.info('[iteration:{}][Snapshot]'.format(cur_iter))
# Evaluate and save snapshot
mAP = evaluate(model,
query_dataloader,
retrieval_dataloader,
code_length,
device,
topk,
multi_labels,
)
model.snapshot(cur_iter, optimizer)
logger.info('Training finish, [iteration:{}][map:{:.4f}][Snapshot]'.format(cur_iter, mAP))
def evaluate(model, query_dataloader, retrieval_dataloader, code_length, device, topk, multi_labels):
"""
Evaluate.
Args
model(torch.nn.Module): CNN model.
query_dataloader(torch.evaluate.data.DataLoader): Query data loader.
retrieval_dataloader(torch.evaluate.data.DataLoader): Retrieval data loader.
code_length(int): Hash code length.
device(torch.device): GPU or CPU.
topk(int): Calculate top k data points map.
multi_labels(bool): Multi labels.
Returns
mAP(float): Mean average precision.
"""
model.eval()
# Generate hash code
query_code = generate_code(model, query_dataloader, code_length, device)
retrieval_code = generate_code(model, retrieval_dataloader, code_length, device)
# One-hot encode targets
if multi_labels:
onehot_query_targets = query_dataloader.dataset.get_targets().to(device)
onehot_retrieval_targets = retrieval_dataloader.dataset.get_targets().to(device)
else:
onehot_query_targets = query_dataloader.dataset.get_onehot_targets().to(device)
onehot_retrieval_targets = retrieval_dataloader.dataset.get_onehot_targets().to(device)
# Calculate mean average precision
mAP = mean_average_precision(
query_code,
retrieval_code,
onehot_query_targets,
onehot_retrieval_targets,
device,
topk,
)
model.train()
return mAP
def generate_code(model, dataloader, code_length, device):
"""
Generate hash code.
Args
model(torch.nn.Module): CNN model.
dataloader(torch.evaluate.data.DataLoader): Data loader.
code_length(int): Hash code length.
device(torch.device): GPU or CPU.
Returns
code(torch.Tensor): Hash code.
"""
with torch.no_grad():
N = len(dataloader.dataset)
code = torch.zeros([N, code_length])
for data, _, index in dataloader:
data = data.to(device)
outputs = model(data)
code[index, :] = outputs.sign().cpu()
return code
def generate_similarity_matrix(features, alpha, beta):
"""
Generate similarity matrix.
Args
features(torch.Tensor): Features.
alpha, beta(float): Hyper-parameters.
Returns
S(torch.Tensor): Similarity matrix.
"""
# Cosine similarity
cos_dist = squareform(pdist(features.numpy(), 'cosine'))
# Find maximum count of cosine distance
max_cnt, max_cos = 0, 0
interval = 1. / 100
cur = 0
for i in range(100):
cur_cnt = np.sum((cos_dist > cur) & (cos_dist < cur + interval))
if max_cnt < cur_cnt:
max_cnt = cur_cnt
max_cos = cur
cur += interval
# Split features into two parts
flat_cos_dist = cos_dist.reshape((-1, 1))
left = flat_cos_dist[np.where(flat_cos_dist <= max_cos)[0]]
right = flat_cos_dist[np.where(flat_cos_dist > max_cos)[0]]
# Reconstruct gaussian distribution
left = np.concatenate([left, 2 * max_cos - left])
right = np.concatenate([2 * max_cos - right, right])
# Model data using gaussian distribution
left_mean, left_std = norm.fit(left)
right_mean, right_std = norm.fit(right)
# Construct similarity matrix
S = (cos_dist < (left_mean - alpha * left_std)) * 1.0 + (cos_dist > (right_mean + beta * right_std)) * -1.0
return torch.FloatTensor(S)
def extract_features(model, dataloader, num_features, device, verbose):
"""
Extract features.
Args
model(torch.nn.Module): CNN model.
dataloader(torch.evaluate.data.DataLoader): Data loader.
num_features(int): Number of features.
device(torch.device): Using GPU or CPU.
verbose(bool): Print log.
Returns
features(torch.Tensor): Features.
"""
model.eval()
model.set_extract_features(True)
features = torch.zeros(dataloader.dataset.data.shape[0], num_features)
with torch.no_grad():
N = len(dataloader)
for i, (data, _, index) in enumerate(dataloader):
if verbose:
logger.debug('[Batch:{}/{}]'.format(i+1, N))
data = data.to(device)
features[index, :] = model(data).cpu()
model.set_extract_features(False)
model.train()
return features
class SSDH_Loss(nn.Module):
def __init__(self):
super(SSDH_Loss, self).__init__()
def forward(self, H, S):
loss = (S.abs() * (H - S).pow(2)).sum() / (H.shape[0] ** 2)
return loss