-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathevaluate.py
54 lines (41 loc) · 1.67 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import torch
def mean_average_precision(query_code,
database_code,
query_labels,
database_labels,
device,
topk=None,
):
"""
Calculate mean average precision(map).
Args:
query_code (torch.Tensor): Query data hash code.
database_code (torch.Tensor): Database data hash code.
query_labels (torch.Tensor): Query data targets, one-hot
database_labels (torch.Tensor): Database data targets, one-host
device (torch.device): Using CPU or GPU.
topk (int): Calculate top k data map.
Returns:
meanAP (float): Mean Average Precision.
"""
num_query = query_labels.shape[0]
mean_AP = 0.0
for i in range(num_query):
# Retrieve images from database
retrieval = (query_labels[i, :] @ database_labels.t() > 0).float()
# Calculate hamming distance
hamming_dist = 0.5 * (database_code.shape[1] - query_code[i, :] @ database_code.t())
# Arrange position according to hamming distance
retrieval = retrieval[torch.argsort(hamming_dist)][:topk]
# Retrieval count
retrieval_cnt = retrieval.sum().int().item()
# Can not retrieve images
if retrieval_cnt == 0:
continue
# Generate score for every position
score = torch.linspace(1, retrieval_cnt, retrieval_cnt).to(device)
# Acquire index
index = (torch.nonzero(retrieval == 1).squeeze() + 1.0).float()
mean_AP += (score / index).mean()
mean_AP = mean_AP / num_query
return mean_AP