-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgen_models.py
52 lines (47 loc) · 1.87 KB
/
gen_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from torch.nn.parameter import Parameter
import torch
from module import *
class Generator_Unet(nn.Module):
def __init__(self, input_nc=1, out_nc=1, bilinear=False):
super(Generator_Unet, self).__init__()
self.bil = bilinear
self.input_nc = input_nc
self.out_nc = out_nc
factor = 2 if bilinear else 1
self.inc = Down(self.input_nc, 16, inc=True)
self.down1 = Down(16, 32)
self.down2 = Down(32, 64)
self.down3 = Down(64, 128)
self.down4 = Down(128, 128)
self.down5 = Down(128, 128)
self.down6 = Down(128, 128)
self.down7 = Down(128, 128)
self.up1 = Up(128, 256//factor, self.bil, dropout=True)
self.up2 = Up(256, 256//factor, self.bil, dropout=True)
self.up3 = Up(256, 256//factor, self.bil, dropout=True)
self.up4 = Up(256, 256//factor, self.bil)
self.up5 = Up(256, 128//factor, self.bil)
self.up6 = Up(128, 64//factor, self.bil)
self.up7 = Up(64, 32//factor, self.bil)
self.outc = OutConv(32, self.out_nc)
def forward(self, input):
x1 = self.inc(input)#(B, 16, 128, 128)
x2 = self.down1(x1)#(B, 32, 64, 64)
x3 = self.down2(x2)#(B, 64, 32, 32)
x4 = self.down3(x3)#(B, 128, 16, 16)
x5 = self.down4(x4)#(B, 128, 8, 8)
x6 = self.down5(x5)#(B, 128, 4, 4)
x7 = self.down6(x6)#(B, 128, 2, 2)
x8 = self.down7(x7)#(B, 128, 1, 1)
x = self.up1(x8, x7)#(B, 256, 2, 2)
x = self.up2(x, x6)#(B, 256, 4, 4)
x = self.up3(x, x5)#(B, 256, 8, 8)
x = self.up4(x, x4)#(B, 256, 16, 16)
x = self.up5(x, x3)#(B, 128, 32, 32)
x = self.up6(x, x2)#(B, 64, 64, 64)
x = self.up7(x, x1)#(B, 32, 128, 128)
prob = self.outc(x)#(B, 1, 256, 256)
return prob