-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSUNIWARD.py
275 lines (227 loc) · 9.19 KB
/
SUNIWARD.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import numpy as np
import matplotlib.pyplot as plt
import random
from scipy.signal import convolve2d
import math
from scipy import misc
import os
from PIL import Image
from numba import jit
import cv2
import scipy.misc
np.set_printoptions(threshold=np.inf)
def S_UNIWARD(coverPath, payload):
sgm = 1
## Get 2D wavelet filters - Daubechies 8
# 1D high pass decomposition filter
hpdf_list = [-0.0544158422, 0.3128715909, -0.6756307363, 0.5853546837, 0.0158291053,
-0.2840155430, -0.0004724846, 0.1287474266, 0.0173693010, -0.0440882539,
- 0.0139810279, 0.0087460940, 0.0048703530, -0.0003917404, -0.0006754494, -0.0001174768]
# 1D low pass decomposition filter
hpdf_len = range(0, len(hpdf_list))
hpdf_list_reverse = hpdf_list[::-1]
lpdf_list = hpdf_list
for i in range(len(hpdf_list)):
lpdf_list[i] = ((-1) ** hpdf_len[i]) * hpdf_list_reverse[i]
hpdf_array = np.array([hpdf_list])
lpdf_array = np.array([lpdf_list])
lpdf = lpdf_array.reshape(len(lpdf_list), 1)
hpdf = hpdf_array.reshape(len(hpdf_list), 1)
# construction of 2D wavelet filters
F1 = lpdf * hpdf_array
F2 = hpdf * lpdf_array
F3 = hpdf * hpdf_array
W_F = np.zeros((F1.shape[0], F1.shape[0], 3))
W_F[:, :, 0] = F1
W_F[:, :, 1] = F2
W_F[:, :, 2] = F3
## Get embedding costs
# initialization
cover = scipy.misc.imread(coverPath, flatten=False, mode='RGB')
wetCost = 100000000
k, l, _ = cover.shape
# add padding
S1, _1 = F1.shape
S2, _2 = F2.shape
S3, _3 = F3.shape
padSize = max(S1, S2, S3)
coverPadded = np.zeros((k + padSize * 2, l + padSize * 2, 3))
for i in range(3):
coverPadded[:, :, i] = np.lib.pad(cover[:, :, i], padSize, 'symmetric')
xi = np.zeros((k + padSize * 2, l + padSize * 2, 3))
x = np.zeros((k, l, 3))
for i in range(3):
# compute residual
R = convolve2d(coverPadded[:, :, i], W_F[:, :, i], mode='same')
xi[:, :, i] = convolve2d(1. / (np.abs(R) + sgm), np.rot90(abs(W_F[:, :, i]), 2), mode='same')
# correct the suitability shift if filter size is even
if S1 % 2 == 0:
xi[:, :, i] = np.roll(xi[:, :, i], [1, 0])
xi[:, :, i] = np.roll(xi[:, :, i], [0, 1])
# remove padding
S_xi, __xi = xi[:, :, i].shape
x[:, :, i] = xi[(S_xi - k) / 2: -(S_xi - k) / 2, (__xi - l) / 2: -(__xi - l) / 2, i]
# compute embedding costs \rho
rho = np.zeros((k, l))
rho = x[:, :, 0] + x[:, :, 1] + x[:, :, 2]
# adjust embedding costs
a, b = np.where(rho > wetCost)
for i in range(len(a)):
rho[a[i], b[i]] = wetCost # threshold on the costs
a, b = np.where(np.isnan(rho))
for i in range(len(a)):
rho[a[i], b[i]] = wetCost # if all xi{} are zero threshold the cost
#k, k_ = rho.shape
rhoP1 = np.zeros((k, l, 3))
rhoM1 = np.zeros((k, l, 3))
for i in range(3):
rhoP1[:,:,i] = rho
rhoM1[:,:,i] = rho
#a, b, c = np.where(cover - 255.0 <= 0.1)
a, b, c = np.where(cover == 255)
for i in range(len(a)):
rhoP1[a[i], b[i], c[i]] = wetCost # do not embed +1 if the pixel has max value
#a, b, c = np.where(cover - 0 <= 0.1)
a, b, c = np.where(cover == 0)
for i in range(len(a)):
rhoM1[a[i], b[i], c[i]] = wetCost # do not embed -1 if the pixel has min value
## Embedding simulator ##
cover_len = len(cover[:, :, 0]) * len(cover[:, :, 0])
stego = cover
print(rhoP1)
for i in range(3):
stego[:, :, i] = EmbeddingSimulator_singel(cover[:, :, i], rhoP1[:, :, i], rhoM1[:, :, i], payload * cover_len,
fixEmbeddingChanges=False)
return stego
# TODO
def EmbeddingSimulator(x, rhoP1, rhoM1, m, fixEmbeddingChanges=False):
cover_len = len(x[:, :, 0]) * len(x[:, :, 0])
l = cal_lambda(rhoP1, rhoM1, m, cover_len)
randChange = random.random(x.shape)
y = x
def EmbeddingSimulator_singel(x, rhoP1, rhoM1, m, fixEmbeddingChanges=False):
w, h = x.shape
cover_len = (w * h)
l = cal_lambda_(rhoP1, rhoM1, m, cover_len)
shape = rhoP1.shape
pChangeP1 = [(math.exp(-l * rhoP1[i][j])) / (1 + math.exp(-l * rhoP1[i][j]) + math.exp(-l * rhoM1[i][j]))
for j in range(shape[1]) for i in range(shape[0])]
pChangeM1 = [(math.exp(-l * rhoM1[i][j])) / (1 + math.exp(-l * rhoP1[i][j]) + math.exp(-l * rhoM1[i][j]))
for j in range(shape[1]) for i in range(shape[0])]
pChangeP1_array = np.array(pChangeP1).reshape(shape[1], shape[0]).T
pChangeM1_array = np.array(pChangeM1).reshape(shape[1], shape[0]).T
if fixEmbeddingChanges == True:
np.random.seed(139187)
randChange = np.random.rand(w, h)
y = x
arr0, _0 = np.where(randChange < pChangeP1_array)
for i in range(len(arr0)):
y[arr0[i]][_0[i]] += 1
arr1, _1 = np.where((randChange >= pChangeP1_array) & (randChange < pChangeP1_array + pChangeM1_array))
for i in range(len(arr1)):
y[arr1[i]][_1[i]] -= 1
return y
# TODO
def cal_lambda(rhoP1, rhoM1, message_length, n):
l3 = 1e+3
m3 = math.ceil(message_length)
iterations = 0
while m3 > message_length:
pP1 = rhoP1
pM1 = rhoM1
shape = pP1.shape
l3 = l3 * 2
pP1 = [
(math.exp(-l3 * rhoP1[i][j][k])) / (1 + math.exp(-l3 * rhoP1[i][j][k]) + math.exp(-l3 * rhoM1[i][j][k]))
for k in range(shape[2]) for j in range(shape[1]) for i in range(shape[0])] # list
pM1 = [
(math.exp(-l3 * rhoM1[i][j][k])) / (1 + math.exp(-l3 * rhoP1[i][j][k]) + math.exp(-l3 * rhoM1[i][j][k]))
for k in range(shape[2]) for j in range(shape[1]) for i in range(shape[0])] # list
pP1_array = (np.array(pP1)).reshape(shape[0], shape[1], shape[2])
pM1_array = (np.array(pM1)).reshape(shape[0], shape[1], shape[2])
m3 = ternary_entropyf_4list(pP1, pM1)
iterations = iterations + 1
if iterations > 10:
return l3
return 0
def cal_lambda_(rhoP1, rhoM1, message_length, n):
l3 = 1e+3
m3 = math.ceil(message_length)
iterations = 0
while m3 > message_length:
pP1 = rhoP1
pM1 = rhoM1
# shape = lambda x: pP1.shape if pP1.shape == pM1.shape else 0
shape = pP1.shape
l3 = l3 * 2
pP1 = [(math.exp(-l3 * rhoP1[i][j])) / (1 + math.exp(-l3 * rhoP1[i][j]) + math.exp(-l3 * rhoM1[i][j]))
for j in range(shape[1]) for i in range(shape[0])] # list
pM1 = [(math.exp(-l3 * rhoM1[i][j])) / (1 + math.exp(-l3 * rhoP1[i][j]) + math.exp(-l3 * rhoM1[i][j]))
for j in range(shape[1]) for i in range(shape[0])] # list
pP1_array = (np.array(pP1)).reshape(shape[1], shape[0]).T
pM1_array = (np.array(pM1)).reshape(shape[1], shape[0]).T
m3 = ternary_entropyf_4list(pP1, pM1)
iterations = iterations + 1
if iterations > 10:
return l3
l1 = 0
m1 = n
l = 0
alpha = message_length / n
# limit search to 30 iterations
# and require that relative payload embedded is roughly within 1/1000 of the required relative payload
while (m1 - m3) / n > alpha / 1000.0 and iterations < 30:
l = l1 + (l3 - l1) / 2
pP1 = [(math.exp(-l * rhoP1[i][j])) / (1 + math.exp(-l * rhoP1[i][j]) + math.exp(-l * rhoM1[i][j]))
for j in range(shape[1]) for i in range(shape[0])]
pM1 = [(math.exp(-l * rhoM1[i][j])) / (1 + math.exp(-l * rhoP1[i][j]) + math.exp(-l * rhoM1[i][j]))
for j in range(shape[1]) for i in range(shape[0])]
m2 = ternary_entropyf_4list(pP1, pM1)
if m2 < message_length:
l3 = l
m3 = m2
else:
l1 = l
m1 = m2
iterations = iterations + 1
return 0
def ternary_entropyf(pP1_, pM1_):
p0 = pP1_
shape = p0.shape
p0 = [1 - pP1_[i][j] - pM1_[i][j] for j in range(shape[1]) for i in range(shape[0])]
ptemp = np.concatenate([[p0], [pP1_], [pM1_]])
_, m, n = ptemp.shape
p = np.reshape(ptemp, _ * m * n, 1)
H = (-(p[i] * math.log(p[i])) for i in range(_ * m * n))
Ht = sum(H)
return Ht
def ternary_entropyf_4list(pP1_, pM1_):
p0 = [1 - pP1_[i] - pM1_[i] for i in range(len(pP1_))]
p = p0 + pP1_ + pM1_
Ht = 0
for i in range(len(p)):
if p[i] != 0:
H = -(p[i] * math.log(p[i]))
Ht += H
# Ht = sum(H)
return Ht
coverPath = './sample'
stegoPath = './stego'
for home, dirs, files in os.walk(coverPath):
for file in files:
if not file.startswith('.'):
imgpath = os.path.join(home, file)
print(imgpath)
#img = misc.imread(imgpath)
img = Image.open(imgpath)
#if img.ndim == 3:
if len(img.split())== 3:
stego = S_UNIWARD(imgpath, 0.4)
stegoname = os.path.join(stegoPath, file)
misc.imsave(stegoname, stego)
#misc.imsave(stegoname, stego-img)
plt.subplot(121)
plt.imshow(img)
plt.subplot(122)
plt.imshow(stego)
plt.show()