-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathdemo_13.py
241 lines (182 loc) · 6.81 KB
/
demo_13.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from matplotlib.widgets import Slider, Button
#plt.rcParams['animation.ffmpeg_path'] = 'D:/portableSoftware/ShareX/ShareX/Tools/ffmpeg.exe'
interval = 50 # ms, time between animation frames
fig, ax = plt.subplots(figsize=(6,6))
plt.subplots_adjust(left=0.15, bottom=0.35)
ax.set_aspect('equal')
plt.xlim(-1.2*40,1.2*40)
plt.ylim(-1.2*40,1.2*40)
#plt.grid()
t = np.linspace(0, 2*np.pi, 2000)
delta = 1
e =2
n=10
RD=40
rd=5
#plt.grid()
## draw pin
l0, = ax.plot([], [], 'r-', lw=2)
ddot, = ax.plot([20],[0], 'ro', ms=5)
def draw_pin_init():
l0.set_data([0], [0])
def pin_update(e,d,D, phis):
x = (d/2*np.cos(t)+ D/2) + e*np.cos(phis)
y = (d/2*np.sin(t) ) + e*np.sin(phis)
l0.set_data(x,y)
x1 = (d/2*np.cos(phis)+ D/2) + e*np.cos(phis)
y1 = (d/2*np.sin(phis) ) + e*np.sin(phis)
#self.line.set_data([0,x1],[0,y1])
ddot.set_data(x1, y1)
## draw drive_pin
a = 5*np.sin(t)
b = 5*np.cos(t)
d0, = ax.plot(a, b,'k-', lw=2)
def drive_pin_update(r,D):
x = r*np.sin(t) + D/2
y = r*np.cos(t)
d0.set_data(x,y)
## draw circle
c = 25*np.sin(t)
d = 25*np.cos(t)
d1, = ax.plot(a, b,'r-', lw=2)
def draw_circle(r):
x = r*np.sin(t)
y = r*np.cos(t)
d1.set_data(x,y)
##ehypocycloidA:
rc = (n-1)*(RD/n)
rm = (RD/n)
xa = (rc+rm)*np.cos(t)-e*np.cos((rc+rm)/rm*t)
ya = (rc+rm)*np.sin(t)-e*np.sin((rc+rm)/rm*t)
dxa = (rc+rm)*(-np.sin(t)+(e/rm)*np.sin((rc+rm)/rm*t))
dya = (rc+rm)*(np.cos(t)-(e/rm)*np.cos((rc+rm)/rm*t))
x = xa + rd/np.sqrt(dxa**2 + dya**2)*(-dya) + e
y = ya + rd/np.sqrt(dxa**2 + dya**2)*dxa
ehypocycloid, = ax.plot(x,y,'r-')
##driver line and dot: (rc+rm) - rd
#self.eline, = self.ax.plot([(rc+rm) - rd, 0],[0,0],'r-')
edot, = ax.plot([(rc+rm) - rd],[0], 'ro', ms=5)
def update_ehypocycloidA(e,n,D,d, phis):
RD=D/2
rd=d/2
rc = (n-1)*(RD/n)
rm = (RD/n)
xa = (rc+rm)*np.cos(t)-e*np.cos((rc+rm)/rm*t)
ya = (rc+rm)*np.sin(t)-e*np.sin((rc+rm)/rm*t)
dxa = (rc+rm)*(-np.sin(t)+(e/rm)*np.sin((rc+rm)/rm*t))
dya = (rc+rm)*(np.cos(t)-(e/rm)*np.cos((rc+rm)/rm*t))
#x = (xa + rd/np.sqrt(dxa**2 + dya**2)*(-dya))
#y = (ya + rd/np.sqrt(dxa**2 + dya**2)*dxa)
x = (xa + rd/np.sqrt(dxa**2 + dya**2)*(-dya))*np.cos(-phis/(n-1) + np.pi/(n-1))-(ya + rd/np.sqrt(dxa**2 + dya**2)*dxa)*np.sin(-phis/(n-1) + np.pi/(n-1))
y = (xa + rd/np.sqrt(dxa**2 + dya**2)*(-dya))*np.sin(-phis/(n-1) + np.pi/(n-1))+(ya + rd/np.sqrt(dxa**2 + dya**2)*dxa)*np.cos(-phis/(n-1) + np.pi/(n-1))
ehypocycloid.set_data(x,y)
#self.eline.set_data([e*np.cos(phis),x[0]],[e*np.sin(phis),y[0]])
edot.set_data(x[0], y[0])
##ehypocycloidB:
rc = (n+1)*(RD/n)
rm = (RD/n)
xa = (rc-rm)*np.cos(t)+e*np.cos((rc-rm)/rm*t)
ya = (rc-rm)*np.sin(t)-e*np.sin((rc-rm)/rm*t)
dxa = (rc-rm)*(-np.sin(t)-(e/rm)*np.sin((rc-rm)/rm*t))
dya = (rc-rm)*(np.cos(t)-(e/rm)*np.cos((rc-rm)/rm*t))
x = xa - rd/np.sqrt(dxa**2 + dya**2)*(-dya) - e
y = ya - rd/np.sqrt(dxa**2 + dya**2)*dxa
ehypocycloidB, = ax.plot(x,y,'b-')
##driver line and dot: (rc+rm) - rd
#self.eline, = self.ax.plot([(rc+rm) - rd, 0],[0,0],'r-')
edotB, = ax.plot([(rc+rm) - rd],[0], 'bo', ms=5)
def update_ehypocycloidB(e,n,D,d, phis):
RD=D/2
rd=d/2
rc = (n+1)*(RD/n)
rm = (RD/n)
xa = (rc-rm)*np.cos(t)+e*np.cos((rc-rm)/rm*t)
ya = (rc-rm)*np.sin(t)-e*np.sin((rc-rm)/rm*t)
dxa = (rc-rm)*(-np.sin(t)-(e/rm)*np.sin((rc-rm)/rm*t))
dya = (rc-rm)*(np.cos(t)-(e/rm)*np.cos((rc-rm)/rm*t))
x = (xa - rd/np.sqrt(dxa**2 + dya**2)*(-dya))*np.cos(phis/(n+1))-(ya - rd/np.sqrt(dxa**2 + dya**2)*dxa)*np.sin(phis/(n+1))
y = (xa - rd/np.sqrt(dxa**2 + dya**2)*(-dya))*np.sin(phis/(n+1))+(ya - rd/np.sqrt(dxa**2 + dya**2)*dxa)*np.cos(phis/(n+1))
ehypocycloidB.set_data(x,y)
#self.eline.set_data([e*np.cos(phis),x[0]],[e*np.sin(phis),y[0]])
edotB.set_data(x[0], y[0])
axcolor = 'lightgoldenrodyellow'
ax_fm = plt.axes([0.25, 0.21, 0.5, 0.02], facecolor=axcolor)
#ax_Rm = plt.axes([0.25, 0.24, 0.5, 0.02], facecolor=axcolor)
#ax_n = plt.axes([0.25, 0.21, 0.5, 0.02], facecolor=axcolor)
ax_Rd = plt.axes([0.25, 0.18, 0.5, 0.02], facecolor=axcolor)
ax_rd = plt.axes([0.25, 0.15, 0.5, 0.02], facecolor=axcolor)
ax_e = plt.axes([0.25, 0.12, 0.5, 0.02], facecolor=axcolor)
ax_N = plt.axes([0.25, 0.09, 0.5, 0.02], facecolor=axcolor)
ax_d = plt.axes([0.25, 0.06, 0.5, 0.02], facecolor=axcolor)
ax_D = plt.axes([0.25, 0.03, 0.5, 0.02], facecolor=axcolor)
sli_fm = Slider(ax_fm, 'fm', 10, 100, valinit=50, valstep=delta)
#sli_Rm = Slider(ax_Rm, 'Rm', 1, 10, valinit=20, valstep=delta)
#sli_n = Slider(ax_n, 'n', 3, 10, valinit=6, valstep=delta)
sli_Rd = Slider(ax_Rd, 'Rd', 1, 40, valinit=20, valstep=delta)
sli_rd = Slider(ax_rd, 'rd', 0.1, 10, valinit=1.5, valstep=delta/10)
sli_e = Slider(ax_e, 'e', 0.1, 10, valinit=2, valstep=delta/10)
sli_N = Slider(ax_N, 'N', 3, 40, valinit=10, valstep=delta)
sli_d = Slider(ax_d, 'd', 2, 20, valinit=10,valstep=delta)
sli_D = Slider(ax_D, 'D', 5, 100, valinit=80,valstep=delta)
def update(val):
sfm = sli_Rd.val
#sRm = sli_Rm.val
sRd = sli_Rd.val
#sn = sli_n.val
srd = sli_rd.val
se = sli_e.val
sN = sli_N.val
sd = sli_d.val
sD = sli_D.val
ax.set_xlim(-1.2*0.5*sD,1.2*0.5*sD)
ax.set_ylim(-1.2*0.5*sD,1.2*0.5*sD)
sli_fm.on_changed(update)
#sli_Rm.on_changed(update)
sli_Rd.on_changed(update)
#sli_n.on_changed(update)
sli_rd.on_changed(update)
sli_e.on_changed(update)
sli_N.on_changed(update)
sli_d.on_changed(update)
sli_D.on_changed(update)
resetax = plt.axes([0.8, 0.0, 0.1, 0.04])
button = Button(resetax, 'Reset', color=axcolor, hovercolor='0.975')
def reset(event):
sli_fm.reset()
#sli_Rm.reset()
#sli_n.reset()
sli_rd.reset()
sli_Rd.reset()
sli_e.reset()
sli_N.reset()
sli_d.reset()
sli_D.reset()
button.on_clicked(reset)
def animate(frame):
sfm = sli_fm.val
#sRm = sli_Rm.val
sRd = sli_Rd.val
#sn = sli_n.val
srd = sli_rd.val
se = sli_e.val
sN = sli_N.val
sd = sli_d.val
sD = sli_D.val
frame = frame+1
phi = 2*np.pi*frame/sfm
draw_pin_init()
draw_circle(sRd)
pin_update(se,sd,sD, phi)
drive_pin_update(srd,sD)
update_ehypocycloidA(se,sN,sD,sd, phi)
update_ehypocycloidB(se,sN,sD,sd, phi)
fig.canvas.draw_idle()
ani = animation.FuncAnimation(fig, animate,frames=sli_fm.val*(sli_N.val-1), interval=interval)
dpi=100
##un-comment the next line, if you want to save the animation as gif:
#hypo.animation.save('myhypocycloid.gif', writer='pillow', fps=10, dpi=75)
#ani.save('myGUI1.mp4', writer="ffmpeg",dpi=dpi)
plt.show()