-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathmanifest.json
65 lines (65 loc) · 2.93 KB
/
manifest.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
{
"title": "KNN",
"description": "Implementation of https://doi.org/10.1145/342009.335437.",
"inputDimensionality": "multivariate",
"version": "0.3.1",
"authors": "Sridhar Ramaswamy,Rajeev Rastogi, Kyuseok Shim",
"language": "Python",
"type": "Detector",
"mainFile": "algorithm.py",
"learningType": "unsupervised",
"executionStep": {
"parameters": [
{
"name": "n_neighbors",
"type": "int",
"defaultValue": 5,
"optional": "true",
"description": " Number of neighbors to use by default for `kneighbors` queries."
},
{
"name": "leaf_size",
"type": "int",
"defaultValue": 30,
"optional": "true",
"description": "Leaf size passed to `BallTree`. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem."
},
{
"name": "method",
"type": "enum[largest,mean,median]",
"defaultValue": "largest",
"optional": "true",
"description": "'largest': use the distance to the kth neighbor as the outlier score, 'mean': use the average of all k neighbors as the outlier score, 'median': use the median of the distance to k neighbors as the outlier score."
},
{
"name": "radius",
"type": "float",
"defaultValue": 1.0,
"optional": "true",
"description": " Range of parameter space to use by default for `radius_neighbors` queries."
},
{
"name": "distance_metric_order",
"type": "int",
"defaultValue": 2,
"optional": "true",
"description": "Parameter for the Minkowski metric from sklearn.metrics.pairwise.pairwise_distances. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. See http://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.pairwise_distances."
},
{
"name": "n_jobs",
"type": "int",
"defaultValue": 1,
"optional": "true",
"description": "The number of parallel jobs to run for neighbors search. If ``-1``, then the number of jobs is set to the number of CPU cores. Affects only kneighbors and kneighbors_graph methods."
},
{
"name": "random_state",
"type": "int",
"defaultValue": 42,
"optional": "true",
"description": "Seed for random number generation."
}
],
"modelInput": "none"
}
}