-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathmanifest.json
105 lines (105 loc) · 4.26 KB
/
manifest.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
{
"title": "Random Forest Regressor (RR)",
"description": "A generic windowed forecasting method using random forest regression (requested by RollsRoyce). The forecasting error is used as anomaly score.",
"inputDimensionality": "univariate",
"learningType": "semi-supervised",
"version": "0.3.0",
"authors": "Sebastian Schmidl",
"language": "Python",
"type": "Detector",
"mainFile": "algorithm.py",
"trainingStep": {
"parameters": [
{
"name": "train_window_size",
"type": "int",
"defaultValue": 50,
"optional": "true",
"description": "Size of the training windows. Always predicts a single point!"
},
{
"name": "n_trees",
"type": "int",
"defaultValue": 100,
"optional": "true",
"description": "The number of trees in the forest."
},
{
"name": "max_features_method",
"type": "enum[auto,sqrt,log2]",
"defaultValue": "auto",
"optional": "true",
"description": "The number of features to consider when looking for the best split between trees: 'auto': max_features=n_features, 'sqrt': max_features=sqrt(n_features), 'log2': max_features=log2(n_features)."
},
{
"name": "bootstrap",
"type": "boolean",
"defaultValue": true,
"optional": "true",
"description": "Whether bootstrap samples are used when building trees. If False, the whole dataset is used to build each tree."
},
{
"name": "max_samples",
"type": "float",
"defaultValue": null,
"optional": "true",
"description": "If bootstrap is True, the number of samples to draw from X to train each base estimator."
},
{
"name": "random_state",
"type": "int",
"defaultValue": 42,
"optional": "true",
"description": "Seeds the randomness of the bootstrapping and the sampling of the features."
},
{
"name": "verbose",
"type": "int",
"defaultValue": 0,
"optional": "true",
"description": "Controls logging verbosity."
},
{
"name": "n_jobs",
"type": "int",
"defaultValue": 1,
"optional": "true",
"description": "The number of jobs to run in parallel. `-1` means using all processors"
},
{
"name": "max_depth",
"type": "int",
"defaultValue": null,
"optional": "true",
"description": "The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples."
},
{
"name": "min_samples_split",
"type": "int",
"defaultValue": 2,
"optional": "true",
"description": "The minimum number of samples required to split an internal node."
},
{
"name": "min_samples_leaf",
"type": "int",
"defaultValue": 1,
"optional": "true",
"description": "The minimum number of samples required to be at a leaf node. A split point at any depth will only be considered if it leaves at least `min_samples_leaf` training samples in each of the left and right branches. This may have the effect of smoothing the model, especially in regression."
}
],
"modelInput": "none"
},
"executionStep": {
"parameters": [
{
"name": "random_state",
"type": "int",
"defaultValue": 42,
"optional": "true",
"description": "Seeds the randomness of the bootstrapping and the sampling of the features."
}
],
"modelInput": "required"
}
}