-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain.py
255 lines (193 loc) · 8.55 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import copy
import argparse
import os
from PIL import Image
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision.transforms as transforms
import torchvision.models as models
from LossFunction import ContentLoss, StyleLoss
plt.switch_backend('agg')
def image_loader(image_name, transform, device):
image = Image.open(image_name)
image = transform(image).unsqueeze(0)
return image.to(device, torch.float)
class Normalization(nn.Module):
def __init__(self, mean, std):
super(Normalization, self).__init__()
self.mean = torch.tensor(mean).view(-1, 1, 1)
self.std = torch.tensor(std).view(-1, 1, 1)
def forward(self, img):
return (img - self.mean) / self.std
def get_style_model_and_losses(cnn, normalization_mean, normalization_std,
style_img, content_img,
content_layers, style_layers, device):
'''
to add content loss and style loss layers after convolution layer by creating a new Sequential module
'''
cnn = copy.deepcopy(cnn)
content_loss_list = []
style_loss_list = []
normalization = Normalization(normalization_mean, normalization_std).to(device)
model = nn.Sequential(normalization)
i = 0
for layer in cnn.children():
if isinstance(layer, nn.Conv2d):
i += 1
name = 'conv_{}'.format(i)
elif isinstance(layer, nn.ReLU):
name = 'relu_{}'.format(i)
layer = nn.ReLU(inplace=False)
elif isinstance(layer, nn.MaxPool2d):
name = 'pool_{}'.format(i)
elif isinstance(layer, nn.BatchNorm2d):
name = 'bn_{}'.format(i)
else:
raise RuntimeError('Unrecognized layer: {}'.format(layer.__class__.__name__))
model.add_module(name, layer)
if name in content_layers:
# add content loss
target = model(content_img).detach()
content_loss = ContentLoss(target)
model.add_module("content_loss_{}".format(i), content_loss)
content_loss_list.append(content_loss)
if name in style_layers:
# add style loss
target_feature = model(style_img).detach()
style_loss = StyleLoss(target_feature)
model.add_module("style_loss_{}".format(i), style_loss)
style_loss_list.append(style_loss)
for i in range(len(model) - 1, -1, -1):
if isinstance(model[i], ContentLoss) or isinstance(model[i], StyleLoss):
break
model = model[:(i + 1)]
return model, style_loss_list, content_loss_list
def get_input_optimizer(input_img):
'''
L-BFGS algorithm to run our gradient descent
to train the input image in order to minimise the content/style losses
'''
optimizer = optim.LBFGS([input_img.requires_grad_()])
return optimizer
def run(cnn, content_layers_default, style_layers_default, content_img, style_img, input_img, device,
num_steps=300, style_weight=10000, content_weight=1):
"""
the function to perform neural transfer
"""
style_loss_list = []
content_loss_list = []
cnn_normalization_mean = torch.tensor([0.485, 0.456, 0.406]).to(device)
cnn_normalization_std = torch.tensor([0.229, 0.224, 0.225]).to(device)
model, style_losses, content_losses = get_style_model_and_losses(
cnn, cnn_normalization_mean, cnn_normalization_std, style_img, content_img,
content_layers_default, style_layers_default, device)
optimizer = get_input_optimizer(input_img)
epoch = [0]
while epoch[0] <= num_steps:
def closure():
input_img.data.clamp_(0, 1)
optimizer.zero_grad()
model(input_img)
style_score = 0
content_score = 0
for sl in style_losses:
style_score += sl.loss
for cl in content_losses:
content_score += cl.loss
style_score *= style_weight
content_score *= content_weight
loss = style_score + content_score
loss.backward()
epoch[0] += 1
if epoch[0] % 10 == 0:
style_loss_list.append(style_score.item())
content_loss_list.append(content_score.item())
if epoch[0] % 50 == 0:
print("epoch {}: Style Loss : {:4f} Content Loss: {:4f}".format(epoch[0], style_score.item(), content_score.item()))
return style_score + content_score
optimizer.step(closure)
input_img.data.clamp_(0, 1)
return input_img, style_loss_list, content_loss_list
def style_transfer(style_img, content_img, outputpath='./result.png', num_steps=500, style_weight=100000, content_weight=1, name='test', loss_dir='losses'):
'''
the main function of neural style transfer
:param style_img: the image with target style you want to transfer to
:param content_img: the original image, to transfer its style while reserve its content
:param outputpath: the path to save image with transferred style
:param num_steps: number of steps to update parameters
:param style_weight: weight of style
:param content_weight: weight of loss
'''
imsize = 512
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
transform = transforms.Compose([
transforms.Resize(imsize),
transforms.CenterCrop(imsize),
transforms.ToTensor()
])
style_img = image_loader(style_img, transform, device)
content_img = image_loader(content_img, transform, device)
# use the features module of pretrained vgg19
# need the output of the individual convolution layers to measure content and style loss.
cnn = models.vgg19(pretrained=True).features.to(device).eval()
# desired depth layers to compute style/content losses :
content_layers_default = ['conv_4']
style_layers_default = ['conv_1', 'conv_2', 'conv_3', 'conv_4', 'conv_5']
input_img = content_img.clone()
output, style_loss, content_loss = run(cnn, content_layers_default, style_layers_default, content_img, style_img, input_img, device,
num_steps=num_steps, style_weight=style_weight, content_weight=content_weight)
output = output.detach().cpu().numpy().squeeze(0).transpose([1,2,0])
plt.imsave(outputpath, output)
plt.clf()
x = [i*10 for i in range(len(style_loss))]
plt.plot(x, style_loss, label='style_loss')
plt.plot(x, content_loss, label='content_loss')
plt.xlabel('steps')
plt.ylabel('loss')
plt.legend()
plt.savefig(os.path.join(loss_dir, "loss" + name))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--style_img_path',
default='./data/style/style3.jpg',
help='path of style image',
type=str)
parser.add_argument('--content_img_dir',
default='./data/content',
help='directory of content images',
type=str)
parser.add_argument('--result_dir',
default='./results',
help='directory to save results',
type=str)
parser.add_argument('--num_steps',
default=500,
help='number of steps to update',
type=int)
parser.add_argument('--style_weight',
default=100000,
help='weight of style',
type=int)
parser.add_argument('--content_weight',
default=1,
help='weight of content',
type=int)
args = parser.parse_args()
style_img_path = args.style_img_path
content_img_dir = args.content_img_dir
result_dir = args.result_dir
num_steps = args.num_steps
style_weight = args.style_weight
content_weight = args.content_weight
if not os.path.isdir(result_dir):
os.mkdir(result_dir)
loss_dir = os.path.join(result_dir, 'losses')
if not os.path.isdir(loss_dir):
os.mkdir(loss_dir)
for img in os.listdir(content_img_dir):
content_img_path = os.path.join(content_img_dir, img)
outputpath = os.path.join(result_dir, 'result-' + img)
style_transfer(style_img_path, content_img_path, outputpath=outputpath, num_steps=num_steps, style_weight=style_weight, content_weight=content_weight, name=img, loss_dir=loss_dir)