forked from pds-data-dictionaries/ldd-cart
-
Notifications
You must be signed in to change notification settings - Fork 0
/
PDS4_CART_1B00_IngestLDD_CART_1930.xml
4837 lines (4668 loc) · 228 KB
/
PDS4_CART_1B00_IngestLDD_CART_1930.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<?xml version="1.0" encoding="UTF-8"?>
<?xml-model
href="https://pds.jpl.nasa.gov/pds4/pds/v1/PDS4_PDS_1B00.sch"
schematypens="http://purl.oclc.org/dsdl/schematron"?>
<!-- PDS4 Local Data Dictionary Ingest File -->
<!-- Generated 2014-02-13T18:31:07Z by eduxbury using mk_img_ldd.pl
from the Imaging Node MySQL img_ldd database.
... removed 'cart.' prefix from all local_id entries
... then, change to v1700 (Sept 7, 2016)
updated standard_parallel_1/2 items per entries throughout
renamed ellipsoid_name to spheroid_name
... then, update Oblique_Mercator per redundancies (already in Map_Projection_Base) (Oct 17, 2016)
... updated spheroid_name as optional, and not enumerated
... See "CHANGE LOG" below for updates progression and detail
-->
<Ingest_LDD
xmlns="http://pds.nasa.gov/pds4/pds/v1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:pds="http://pds.nasa.gov/pds4/pds/v1"
xsi:schemaLocation="http://pds.nasa.gov/pds4/pds/v1 https://pds.nasa.gov/pds4/pds/v1/PDS4_PDS_1B00.xsd">
<name>Cartography</name>
<ldd_version_id>1.9.3.0</ldd_version_id>
<full_name>Trent Hare</full_name>
<steward_id>img</steward_id>
<namespace_id>cart</namespace_id>
<comment>
Contains classes and attributes used to describe cartographic
products. This information is largely adapted from the Federal Geographic
Data Committee (FGDC) "Content Standard for Digital Geospatial Metadata",
with extensions (changes/additions) to satisfy planetary requirements.
## CHANGE LOG ##
1.9.0.0
- Upgraded to v1900 of the IM
- Created new Map_Projection_Lander class with associated map projections and attributes
- New pixel_scale attribute that defines a pixel scale not x/y aligned
- Change units for pixel_scale_x/y to Units_of_Pixel_Scale_Map
- Change units for pixel_resolution_x/y to Units_of_Pixel_Resolution_Map
- Change local_georeference_information to optional in the case where Map_Projection_Lander is specified.
- Created Local_child_check rule to check this
- Change Spatial_Domain to optional in the case where Map_Projection_Lander is specified since domain is the horizon
- Created spatial_domain_or_lander_check rule to check this
- Added Local_Internal_Reference at top-level of Cartography dictionary
- Created local_reference_type_check_cart rule to enforce value of Local_Internal_Reference
1.9.0.1
- Changed all class local_identifier to identifier_reference per v1900 IM update
- Changed Coordinate_Space_Reference to inherit from Geometry dictionary
1.9.0.2
- CIsbell 24July2018
- Added/corrected unit_of_measure_type where appropriate to correctly include
'Units_of_Pixel_Scale_Map' and 'Units_of_Pixel_Resolution_Map'
1.9.1.0
- Added Point Perspective Map Projection (CIsbell).
- Note: As of 24July2018, parameters/attributes here include only those required to define the 'fundamental' Point Perspective (PP)
Projection. That is, along with the common base projection parameters required for all projections, the additional PP
requirements of target_center_distance and nadir point (longitude_of_central_meridian, latitude_of_projection_origin)
will define the basic PP projection. Additional parameters for a more 'complex' PP (line/sample sub-spacecraft offsets,
optical offsets, focal parameters, image array segment definitions, etc, will need to be added as needed.
1.9.1.1
- CDeCesare 20181116
- Removed definitions of classes which are already defined by GEOM dictionary: Vector_Cartesian_Unit_Base, Vector_Cartesian_Position_Base, Vector_Cartesian_No_Units
- Updated references that point at Vector_Cartesian_Unit_Base to instead point at geom.Vector_Cartesian_Unit
- Updated references that point at Vector_Cartesian_Position_Base to instead point at geom.Vector_Cartesian_Position_Base
1.9.2.0
PGeissler and THare 20181221
- Added Oblique Cylindrical Map Projection
- Note: To support Cassini BIDR. This is a somewhat specialize map projection which requires several new projection parameters
including: reference_latitude, reference_longitude, map_projection_rotation, oblique_proj_pole_latitude,
oblique_proj_pole_longitude, oblique_proj_pole_rotation, oblique_proj_x_axis_vector, oblique_proj_y_axis_vector, and
oblique_proj_z_axis_vector. The original parameter center_latitude is now mapped to latitude_of_projection_origin and
the original parameter center_longitude is now mapped to longitude_of_central_meridian. line, sample offsets are
remapped into meters using upperleft_corner_x and upperleft_corner_y.
- Added many definitions for map projections (cartographic and lander).
- Removed "General Vertical Near-sided Projection" since it has functionally been replaced by "Point Perspective".
1.9.3.0
THare and PGeissler 20190424
- 'Planar_Coordinate_Information' is no longer mandated to better support vector files. It should be added for images
- 'cart.latitude_resolution' and 'cart:longitude_resolution' to be optional, not needed for vector GIS labels
- Added Secondary_Spatial_Domain as an optional or alternative method to list IAU recommended or historically used
bounding coordinate section to support both positive East and positive West systems in the same label.
- Rename all three radius parameter names. These were renamed to clarify the parameter names since the name
semi_major_radius is flawed and confusing as semi and radius both mean "half". This keyword should have
originally been named semi_major_axis (as used by the Federal Geospatial Data Consortium [FGDC]). To better
align with PDS version 3, we are moving these parameters names back to a_axis_radius, b_axis_radius, and
c_axis_radius. Thus we are renaming:
- semi_major_radius to a_axis_radius.
- semi_minor_radius to b_axis_radius
- polar_radius to c_axis_radius
To be clear, most mapping applications call a_axis_radius the semi_major_axis and c_axis_radius the semi_minor_radius.
The b_axis_radius value is generally not seen in mapping applictions which typical do not support triaxial definitions
for map projections. For most all cases, when a triaxial definition is defined, the IAU defines a best fit sphere.
see: https://astrogeology.usgs.gov/groups/IAU-WGCCRE.
When a best-fit sphere or a body is already defined as a sphere, a single radius value will be listed across all three
parameters a_axis_radius, b_axis_radius, and c_axis_radius. For an ellipse, the a_axis_radius and b_axis_radius will be
defined by a single radius value and a different (generally smaller) radius value for the c_axis_radius. Lastly, the
default units for the these parameters was set to meters "m".
</comment>
<last_modification_date_time>2019-04-24T00:00:00Z</last_modification_date_time>
<DD_Attribute>
<name>target_center_distance</name>
<version_id>1.0</version_id>
<local_identifier>target_center_distance</local_identifier>
<nillable_flag>false</nillable_flag>
<submitter_name>Chris Isbell - USGS</submitter_name>
<definition>
The target_center_distance attribute provides the distance to target center,
in meters, relative to the observing system.
</definition>
<DD_Value_Domain>
<enumeration_flag>false</enumeration_flag>
<value_data_type>ASCII_Real</value_data_type>
<unit_of_measure_type>Units_of_Length</unit_of_measure_type>
<specified_unit_id>m</specified_unit_id>
</DD_Value_Domain>
</DD_Attribute>
<!-- added/enabled: 20150331 (rj) -->
<DD_Attribute>
<name>upperleft_corner_x</name>
<version_id>1.0</version_id>
<local_identifier>upperleft_corner_x</local_identifier>
<nillable_flag>false</nillable_flag>
<submitter_name>Ronald Joyner</submitter_name>
<definition>
The upperleft_corner_x and upperleft_corner_y attributes provide the projection x and y values,
in meters, relative to the map projection origin, at sample 0.5 and line 0.5 (upper left corner
of pixel 1,1 within image array).
(0.5,0.5) - upper left corner (edge) of pixel 1,1
/
#---+---+-> I where # is X,Y location in meters,
| * | | relative to map projection origin.
+---+---+ where * is pixel coordinate (1.0,1.0)
| \
J pixel coordinate (2.5,1.5)
</definition>
<DD_Value_Domain>
<enumeration_flag>false</enumeration_flag>
<value_data_type>ASCII_Real</value_data_type>
<unit_of_measure_type>Units_of_Length</unit_of_measure_type>
<specified_unit_id>m</specified_unit_id>
</DD_Value_Domain>
</DD_Attribute>
<DD_Attribute>
<name>upperleft_corner_y</name>
<version_id>1.0</version_id>
<local_identifier>upperleft_corner_y</local_identifier>
<nillable_flag>false</nillable_flag>
<submitter_name>Ronald Joyner</submitter_name>
<definition>
The upperleft_corner_x and upperleft_corner_y attributes provide the projection x and y values,
in meters, relative to the map projection origin, at sample 0.5 and line 0.5 (upper left corner
of pixel 1,1 within image array).
(0.5,0.5) - upper left corner (edge) of pixel 1,1
/
#---+---+-> I where # is X,Y location in meters,
| * | | relative to map projection origin.
+---+---+ where * is pixel coordinate (1.0,1.0)
| \
J pixel coordinate (2.5,1.5)
</definition>
<DD_Value_Domain>
<enumeration_flag>false</enumeration_flag>
<value_data_type>ASCII_Real</value_data_type>
<unit_of_measure_type>Units_of_Length</unit_of_measure_type>
<specified_unit_id>m</specified_unit_id>
</DD_Value_Domain>
</DD_Attribute>
<!-- 20151021: Per C.Isbell - removed 'cart.reference_frame_name'
<DD_Attribute>
<name>reference_frame_name</name>
<version_id>1.0</version_id>
<local_identifier>cart.reference_frame_name</local_identifier>
<nillable_flag>false</nillable_flag>
<submitter_name>Ronald Joyner</submitter_name>
<definition>
The name of the referenced frame.
</definition>
<DD_Value_Domain>
<enumeration_flag>false</enumeration_flag>
<value_data_type>ASCII_Short_String_Collapsed</value_data_type>
<unit_of_measure_type>Units_of_None</unit_of_measure_type>
</DD_Value_Domain>
</DD_Attribute>
-->
<DD_Attribute>
<name>scale_factor_at_projection_origin</name>
<version_id>1.0</version_id>
<local_identifier>scale_factor_at_projection_origin</local_identifier>
<nillable_flag>false</nillable_flag>
<submitter_name>Ronald Joyner</submitter_name>
<definition>
The scale_factor_at_projection_origin attribute
provides a multiplier for reducing a distance obtained from a
map by computation or scaling to the actual distance at the
projection origin.
</definition>
<DD_Value_Domain>
<enumeration_flag>false</enumeration_flag>
<value_data_type>ASCII_Real</value_data_type>
<unit_of_measure_type>Units_of_None</unit_of_measure_type>
</DD_Value_Domain>
</DD_Attribute>
<DD_Attribute>
<name>west_bounding_coordinate</name>
<version_id>1.0</version_id>
<local_identifier>west_bounding_coordinate</local_identifier>
<nillable_flag>false</nillable_flag>
<submitter_name>Elizabeth D. Rye</submitter_name>
<definition>The west_bounding_coordinate attribute provides the
western-most coordinate of the limit of coverage expressed in
longitude.</definition>
<!--<Terminological_Entry>
<name>west_bounding_coordinate</name>
<definition>The west_bounding_coordinate attribute provides the western-most coordinate of the limit of coverage expressed in longitude.</definition>
<language>English</language>
<preferred_flag>true</preferred_flag>
</Terminological_Entry>
<Terminological_Entry>
<name>West_Bounding_Coordinate</name>
<definition>western-most coordinate of the limit of coverage expressed in longitude</definition>
<language>English</language>
<preferred_flag>false</preferred_flag>
</Terminological_Entry>
<Terminological_Entry>
<name>westbc</name>
<definition>western-most coordinate of the limit of coverage expressed in longitude</definition>
<language>English</language>
<preferred_flag>false</preferred_flag>
</Terminological_Entry>
<Terminological_Entry>
<name>WESTERNMOST_LONGITUDE</name>
<definition>The following definitions describe westernmost longitude for the body-fixed, rotating coordinate systems:
For Planetocentric coordinates and for Planetographic coordinates in which longitude increases toward the east,
the westernmost (leftmost) longitude of a spatial area (e.g.,a map, mosaic, bin,feature or region) is the minimum
numerical value of longitude unless it crosses the Prime Meridian.
For Planetographic coordinates in which longitude increases toward the west (prograde rotator), the westernmost
(leftmost) longitude of a spatial area (e.g., a map,mosaic, bin, feature or region) is the maximum numerical value
of longitude unless it crosses the Prime Meridian.
For the Earth, Moon and Sun, PDS also supports the traditional use of the range (-180,180) in which case the
westernmost (leftmost) longitude is the minimum numerical value of longitude unless it crosses -180.
</definition>
<language>English</language>
<preferred_flag>false</preferred_flag>
</Terminological_Entry>-->
<DD_Value_Domain>
<enumeration_flag>false</enumeration_flag>
<value_data_type>ASCII_Real</value_data_type>
<minimum_value>-180.0</minimum_value>
<maximum_value>360.0</maximum_value>
<unit_of_measure_type>Units_of_Angle</unit_of_measure_type>
<specified_unit_id>deg</specified_unit_id>
</DD_Value_Domain>
</DD_Attribute>
<DD_Attribute>
<name>east_bounding_coordinate</name>
<version_id>1.0</version_id>
<local_identifier>east_bounding_coordinate</local_identifier>
<nillable_flag>false</nillable_flag>
<submitter_name>Elizabeth D. Rye</submitter_name>
<definition>The east_bounding_coordinate attribute provides the
eastern-most coordinate of the limit of coverage expressed in
longitude.</definition>
<!--<Terminological_Entry>
<name>east_bounding_coordinate</name>
<definition>The east_bounding_coordinate attribute provides the eastern-most coordinate of the limit of coverage expressed in longitude.</definition>
<language>English</language>
<preferred_flag>true</preferred_flag>
</Terminological_Entry>
<Terminological_Entry>
<name>East_Bounding_Coordinate</name>
<definition>eastern-most coordinate of the limit of coverage expressed in longitude</definition>
<language>English</language>
<preferred_flag>false</preferred_flag>
</Terminological_Entry>
<Terminological_Entry>
<name>eastbc</name>
<definition>eastern-most coordinate of the limit of coverage expressed in longitude</definition>
<language>English</language>
<preferred_flag>false</preferred_flag>
</Terminological_Entry>
<Terminological_Entry>
<name>EASTERNMOST_LONGITUDE</name>
<definition>The following definitions describe easternmost longitude for the body-fixed, rotating coordinate systems:
For Planetocentric coordinates and for Planetographic coordinates in which longitude increases toward the east,
the easternmost (rightmost) longitude of a spatial area (e.g.,a map, mosaic, bin,feature or region) is the
maximum numercial value of longitude unless it crosses the Prime Meridian.
For Planetographic coordinates in which longitude increases toward the west, the easternmost (rightmost)
longitude of a spatial area (e.g., a map, mosaic, bin, feature or region) is the minimum numerical value
of longitude unless it crosses the Prime Meridian.
For the Earth, Moon and Sun, PDS also supports the traditional use of the range (-180,180) in which case the easternmost (rightmost) longitude is the maximum numerical value of longitude unless it crosses 180.</definition>
<language>English</language>
<preferred_flag>false</preferred_flag>
</Terminological_Entry>-->
<DD_Value_Domain>
<enumeration_flag>false</enumeration_flag>
<value_data_type>ASCII_Real</value_data_type>
<minimum_value>-180.0</minimum_value>
<maximum_value>360.0</maximum_value>
<unit_of_measure_type>Units_of_Angle</unit_of_measure_type>
<specified_unit_id>deg</specified_unit_id>
</DD_Value_Domain>
</DD_Attribute>
<DD_Attribute>
<name>north_bounding_coordinate</name>
<version_id>1.0</version_id>
<local_identifier>north_bounding_coordinate</local_identifier>
<nillable_flag>false</nillable_flag>
<submitter_name>Elizabeth D. Rye</submitter_name>
<definition>The north_bounding_coordinate attribute provides the
northern-most coordinate of the limit of coverage expressed in
latitude.</definition>
<!--<Terminological_Entry>
<name>north_bounding_coordinate</name>
<definition>The north_bounding_coordinate attribute provides the northern-most coordinate of the limit of coverage expressed in latitude.</definition>
<language>English</language>
<preferred_flag>true</preferred_flag>
</Terminological_Entry>
<Terminological_Entry>
<name>North_Bounding_Coordinate</name>
<definition>northern-most coordinate of the limit of coverage expressed in latitude</definition>
<language>English</language>
<preferred_flag>false</preferred_flag>
</Terminological_Entry>
<Terminological_Entry>
<name>northbc</name>
<definition>northern-most coordinate of the limit of coverage expressed in latitude</definition>
<language>English</language>
<preferred_flag>false</preferred_flag>
</Terminological_Entry>
<Terminological_Entry>
<name>MAXIMUM_LATITUDE</name>
<definition>The maximum_latitude element specifies the northernmost latitude of a spatial area, such as a map, mosaic, bin, feature, or region.</definition>
<language>English</language>
<preferred_flag>false</preferred_flag>
</Terminological_Entry>-->
<DD_Value_Domain>
<enumeration_flag>false</enumeration_flag>
<value_data_type>ASCII_Real</value_data_type>
<minimum_value>-90.0</minimum_value>
<maximum_value>90.0</maximum_value>
<unit_of_measure_type>Units_of_Angle</unit_of_measure_type>
<specified_unit_id>deg</specified_unit_id>
</DD_Value_Domain>
</DD_Attribute>
<DD_Attribute>
<name>south_bounding_coordinate</name>
<version_id>1.0</version_id>
<local_identifier>south_bounding_coordinate</local_identifier>
<nillable_flag>false</nillable_flag>
<submitter_name>Elizabeth D. Rye</submitter_name>
<definition>The south_bounding_coordinate attribute provides the
southern-most coordinate of the limit of coverage expressed in
latitude.</definition>
<!--<Terminological_Entry>
<name>south_bounding_coordinate</name>
<definition>The south_bounding_coordinate attribute provides the southern-most coordinate of the limit of coverage expressed in latitude.</definition>
<language>English</language>
<preferred_flag>true</preferred_flag>
</Terminological_Entry>
<Terminological_Entry>
<name>South_Bounding_Coordinate</name>
<definition>southern-most coordinate of the limit of coverage expressed in latitude</definition>
<language>English</language>
<preferred_flag>false</preferred_flag>
</Terminological_Entry>
<Terminological_Entry>
<name>southbc</name>
<definition>southern-most coordinate of the limit of coverage expressed in latitude</definition>
<language>English</language>
<preferred_flag>false</preferred_flag>
</Terminological_Entry>
<Terminological_Entry>
<name>MINIMUM_LATITUDE</name>
<definition>The minimum_latitude element specifies the southernmost latitude of a spatial area, such as a map, mosaic, bin, feature, or region.</definition>
<language>English</language>
<preferred_flag>false</preferred_flag>
</Terminological_Entry>-->
<DD_Value_Domain>
<enumeration_flag>false</enumeration_flag>
<value_data_type>ASCII_Real</value_data_type>
<minimum_value>-90.0</minimum_value>
<maximum_value>90.0</maximum_value>
<unit_of_measure_type>Units_of_Angle</unit_of_measure_type>
<specified_unit_id>deg</specified_unit_id>
</DD_Value_Domain>
</DD_Attribute>
<!-- 20151021: Per C.Isbell - removed 'cart.horizontal_datum_name'
<DD_Attribute>
<name>horizontal_datum_name</name>
<version_id>1.0</version_id>
<local_identifier>cart.horizontal_datum_name</local_identifier>
<nillable_flag>false</nillable_flag>
<submitter_name>Elizabeth D. Rye</submitter_name>
<definition>The horizontal_datum_name attribute provides the
identification given to reference system used for defining the
coordinates of points.</definition>
<comment>Needs additional standard values for other planets.</comment>
<DD_Value_Domain>
<enumeration_flag>true</enumeration_flag>
<value_data_type>ASCII_Short_String_Collapsed</value_data_type>
<unit_of_measure_type>Units_of_None</unit_of_measure_type>
<DD_Permissible_Value>
<value>North American Datum of 1927</value>
<value_meaning>TBD</value_meaning>
</DD_Permissible_Value>
<DD_Permissible_Value>
<value>North American Datum of 1983</value>
<value_meaning>TBD</value_meaning>
</DD_Permissible_Value>
</DD_Value_Domain>
</DD_Attribute>
-->
<!-- 20151021: Per C.Isbell - renamed 'ellipsoid_name' to 'spheroid_name'
20160816: C.Isbell, removed Earth names (inserted "TBD" names per pending planetary use)
20161018: C.Isbell, actually, then removed enumeration. Made optional.
-->
<DD_Attribute>
<name>spheroid_name</name>
<version_id>1.0</version_id>
<local_identifier>spheroid_name</local_identifier>
<nillable_flag>false</nillable_flag>
<submitter_name>Chris Isbell</submitter_name>
<definition>The spheroid_name attribute provides the identification
given to established representations of a planet's shape.
</definition>
<comment>Needs additional standard values for other planets.</comment>
<DD_Value_Domain>
<!-- Can use same value as Target_Identification > Name. Or, enter value as
being used witin GIS domain standards. Lien: PDS and other entities (GIS,
IAU, USGS, NAIF, etc to define values, if needed. See for additional background:
http://www.hou.usra.edu/meetings/lpsc2016/pdf/1422.pdf
-->
<enumeration_flag>false</enumeration_flag>
<value_data_type>ASCII_Short_String_Collapsed</value_data_type>
<unit_of_measure_type>Units_of_None</unit_of_measure_type>
<!-- removed permissible value enumeration, see C.Isbell prev version -->
</DD_Value_Domain>
</DD_Attribute>
<DD_Attribute>
<name>a_axis_radius</name>
<version_id>1.0</version_id>
<local_identifier>a_axis_radius</local_identifier>
<nillable_flag>false</nillable_flag>
<submitter_name>Trent M. Hare</submitter_name>
<definition>The a_axis_radius attribute provides the radius of the equatorial
axis of the ellipsoid. The IAU calls this "Subplanetary equatorial radius" and
mapping applications generally call this "semi_major_axis".
</definition>
<comment>In PDS3 this was named A_AXIS_RADIUS.</comment>
<DD_Value_Domain>
<enumeration_flag>false</enumeration_flag>
<value_data_type>ASCII_Real</value_data_type>
<minimum_value>0.0</minimum_value>
<unit_of_measure_type>Units_of_Length</unit_of_measure_type>
<specified_unit_id>m</specified_unit_id>
</DD_Value_Domain>
</DD_Attribute>
<DD_Attribute>
<name>b_axis_radius</name>
<version_id>1.0</version_id>
<local_identifier>b_axis_radius</local_identifier>
<nillable_flag>false</nillable_flag>
<submitter_name>Trent M. Hare</submitter_name>
<definition>The b_axis_radius attribute provides the value of the
intermediate axis of the ellipsoid that defines the approximate shape
of a target body. The b_axis_radius is usually in the equatorial
plane. The IAU calls this axis "along orbit equatorial radius". Mapping
applications, which generally only define a sphere or an ellipse, do not
support this radius parameter.</definition>
<comment>In PDS3 this was named B_AXIS_RADIUS.</comment>
<DD_Value_Domain>
<enumeration_flag>false</enumeration_flag>
<value_data_type>ASCII_Real</value_data_type>
<minimum_value>0.0</minimum_value>
<unit_of_measure_type>Units_of_Length</unit_of_measure_type>
<specified_unit_id>m</specified_unit_id>
</DD_Value_Domain>
</DD_Attribute>
<DD_Attribute>
<name>c_axis_radius</name>
<version_id>1.0</version_id>
<local_identifier>c_axis_radius</local_identifier>
<nillable_flag>false</nillable_flag>
<submitter_name>Trent M. Hare</submitter_name>
<definition>The c_axis_radius attribute provides the value of the
polar axis of the ellipsoid that defines the approximate shape of
a target body. The c_axis_radius is normal to the plane defined by
the a_axis_radius and b_axis_radius. The IAU calls this "polar radius".
Mapping applications generally call this "semi_minor_axis"
</definition>
<comment>In PDS3 this was named C_AXIS_RADIUS.</comment>
<DD_Value_Domain>
<enumeration_flag>false</enumeration_flag>
<value_data_type>ASCII_Real</value_data_type>
<minimum_value>0.0</minimum_value>
<unit_of_measure_type>Units_of_Length</unit_of_measure_type>
<specified_unit_id>m</specified_unit_id>
</DD_Value_Domain>
</DD_Attribute>
<DD_Attribute>
<name>longitude_direction</name>
<version_id>1.0</version_id>
<local_identifier>longitude_direction</local_identifier>
<nillable_flag>false</nillable_flag>
<submitter_name>Elizabeth D. Rye</submitter_name>
<definition>The longitude_direction attribute identifies the direction
of longitude (e.g. POSITIVE_EAST or POSITIVE_WEST) for a planet. The
IAU definition for direction of positive longitude should be adopted:
http://astrogeology.usgs.gov/groups/IAU-WGCCRE. Typically, for planets
with prograde (direct) rotations, positive longitude direction is to
the west. For planets with retrograde rotations, positive longitude
direction is to the east. Generally the Positive West longitude_direction
is used for planetographc systems and Positive East is used for
planetocentric systems. If the data is defined with Spatial_Domain in a manner
not recommended by the IAU, there is a optional Secondary_Spatial_Domain section
to define a second set of bounding coordinates.</definition>
<DD_Value_Domain>
<enumeration_flag>true</enumeration_flag>
<value_data_type>ASCII_Short_String_Collapsed</value_data_type>
<minimum_characters>13</minimum_characters>
<maximum_characters>13</maximum_characters>
<unit_of_measure_type>Units_of_None</unit_of_measure_type>
<DD_Permissible_Value>
<value>Positive East</value>
<value_meaning>Positive East longitudes (i.e., longitudes measured positively
to the east) will be used when the bodies rotation is retrograde. Because
of tradition, the Earth, Sun, and Moon do not conform with this definition.
Their rotations are direct and longitudes run both east and west 180 degree,
or east 360 degree.</value_meaning>
</DD_Permissible_Value>
<DD_Permissible_Value>
<value>Positive West</value>
<value_meaning>Positive West longitudes (i.e., longitudes measured
positively to the west) will be used when the rotation is prograde (direct).
</value_meaning>
</DD_Permissible_Value>
</DD_Value_Domain>
</DD_Attribute>
<!-- 20151021: Per C.Isbell - added 'cart.latitude_type' -->
<DD_Attribute>
<name>latitude_type</name>
<version_id>1.0</version_id>
<local_identifier>latitude_type</local_identifier>
<nillable_flag>false</nillable_flag>
<submitter_name>Chris Isbell</submitter_name>
<definition>The latitude_type attribute defines the type of latitude
(planetographic, planetocentric) used within a cartographic product
and as reflected in attribute values within associated PDS labels.
For planets and satellites, latitude is measured north and south of
the equator; north latitudes are designated as positive. The planetocentric
latitude is the angle between the equatorial plane and a line from the
center of the body. The planetographic latitude is the angle between
the equatorial plane and a line that is normal to the body. In summary,
both latitudes are equivalent on a sphere (i.e., equatorial radius equal
to polar radius); however, they differ on an ellipsoid (e.g., Mars, Earth).
For more on latitude_type, please see the IAU publication available here:
http://astrogeology.usgs.gov/groups/IAU-WGCCRE
</definition>
<DD_Value_Domain>
<enumeration_flag>true</enumeration_flag>
<value_data_type>ASCII_Short_String_Collapsed</value_data_type>
<unit_of_measure_type>Units_of_None</unit_of_measure_type>
<DD_Permissible_Value>
<value>Planetographic</value>
<value_meaning>The planetographic latitude is the angle between
the equatorial plane and a line that is normal to the body.
</value_meaning>
</DD_Permissible_Value>
<DD_Permissible_Value>
<value>Planetocentric</value>
<value_meaning>The planetocentric latitude is the angle between
the equatorial plane and a line from the center of the body.
</value_meaning>
</DD_Permissible_Value>
</DD_Value_Domain>
</DD_Attribute>
<DD_Attribute>
<name>latitude_resolution</name>
<version_id>1.0</version_id>
<local_identifier>latitude_resolution</local_identifier>
<nillable_flag>false</nillable_flag>
<submitter_name>Elizabeth D. Rye</submitter_name>
<definition>The latitude_resolution attribute indicates the minimum
difference between two adjacent latitude values expressed in angular
units of measure.</definition>
<DD_Value_Domain>
<enumeration_flag>false</enumeration_flag>
<value_data_type>ASCII_Real</value_data_type>
<minimum_value>0.0</minimum_value>
<unit_of_measure_type>Units_of_Angle</unit_of_measure_type>
<specified_unit_id>deg</specified_unit_id>
</DD_Value_Domain>
</DD_Attribute>
<DD_Attribute>
<name>longitude_resolution</name>
<version_id>1.0</version_id>
<local_identifier>longitude_resolution</local_identifier>
<nillable_flag>false</nillable_flag>
<submitter_name>Elizabeth D. Rye</submitter_name>
<definition>The longitude_resolution attribute indicates the minimum
difference between two adjacent longitude values expressed in angular
units of measure.</definition>
<DD_Value_Domain>
<enumeration_flag>false</enumeration_flag>
<value_data_type>ASCII_Real</value_data_type>
<minimum_value>0.0</minimum_value>
<unit_of_measure_type>Units_of_Angle</unit_of_measure_type>
<specified_unit_id>deg</specified_unit_id>
</DD_Value_Domain>
</DD_Attribute>
<DD_Attribute>
<name>local_description</name>
<version_id>1.0</version_id>
<local_identifier>local_description</local_identifier>
<nillable_flag>false</nillable_flag>
<submitter_name>Elizabeth D. Rye</submitter_name>
<definition>The local_description attribute provides a description of
the coordinate system and its orientation to the surface of a
planet.</definition>
<DD_Value_Domain>
<enumeration_flag>false</enumeration_flag>
<value_data_type>ASCII_Text_Preserved</value_data_type>
<unit_of_measure_type>Units_of_None</unit_of_measure_type>
</DD_Value_Domain>
</DD_Attribute>
<DD_Attribute>
<name>local_georeference_information</name>
<version_id>1.0</version_id>
<local_identifier>local_georeference_information</local_identifier>
<nillable_flag>false</nillable_flag>
<submitter_name>Elizabeth D. Rye</submitter_name>
<definition>The local_georeference_information attribute provides a description of
the information provided to register the local system to a planet
(e.g. control points, satellite ephemeral data, inertial navigation
data).</definition>
<DD_Value_Domain>
<enumeration_flag>false</enumeration_flag>
<value_data_type>ASCII_Text_Preserved</value_data_type>
<unit_of_measure_type>Units_of_None</unit_of_measure_type>
</DD_Value_Domain>
</DD_Attribute>
<DD_Attribute>
<name>planar_coordinate_encoding_method</name>
<version_id>1.0</version_id>
<local_identifier>planar_coordinate_encoding_method</local_identifier>
<nillable_flag>false</nillable_flag>
<submitter_name>Elizabeth D. Rye</submitter_name>
<definition>The planar_coordinate_encoding_method attribute indicates
the means used to represent horizontal positions.</definition>
<DD_Value_Domain>
<enumeration_flag>true</enumeration_flag>
<value_data_type>ASCII_Short_String_Collapsed</value_data_type>
<unit_of_measure_type>Units_of_None</unit_of_measure_type>
<DD_Permissible_Value>
<value>Coordinate Pair</value>
<value_meaning>A method of encoding the position of a point by measuring its distance
from perpendicular reference axes (Casrtesian plane). The coordinate pair (x,y),
generally in meters, is defined such that x is determined by its horizontal distance
from the origin and y is determined by its vertical distance from the origin.
</value_meaning>
</DD_Permissible_Value>
<DD_Permissible_Value>
<value>Distance and Bearing</value>
<value_meaning>A method of encoding the position of a point by measuring
its distance and direction (azimuth angle) from another point.</value_meaning>
</DD_Permissible_Value>
<DD_Permissible_Value>
<value>Row and Column</value>
<value_meaning>A method of encoding the position of a point by measuring its distance
from perpendicular reference axes (Casrtesian plane). The coordinate pair (row,column),
generally in pixels, is defined such that the row is determined by its horizontal
distance from the origin and column is determined by its vertical distance from the
origin.</value_meaning>
</DD_Permissible_Value>
</DD_Value_Domain>
</DD_Attribute>
<DD_Attribute>
<name>map_projection_name</name>
<version_id>1.0</version_id>
<local_identifier>map_projection_name</local_identifier>
<nillable_flag>false</nillable_flag>
<submitter_name>Elizabeth D. Rye</submitter_name>
<definition>The map_projection_name attribute provides the name of the
map projection. Definitions when available are from Synder, J.P., 1987,
Map Projections: A Working Manual, USGS Numbered Series,
Professional Paper 1395, URL: https://doi.org/10.3133/pp1395.</definition>
<DD_Value_Domain>
<enumeration_flag>true</enumeration_flag>
<value_data_type>ASCII_Short_String_Collapsed</value_data_type>
<unit_of_measure_type>Units_of_None</unit_of_measure_type>
<DD_Permissible_Value>
<value>Albers Conical Equal Area</value>
<value_meaning>Projection is mathematically based on a cone that is conceptually
secant on two parallels. No areal deformation. North or South Pole is
represented by an arc. Retains its properties at various scales; individual maps
can be joined along their edges. </value_meaning>
</DD_Permissible_Value>
<DD_Permissible_Value>
<value>Azimuthal Equidistant</value>
<value_meaning>Projection is mathematically based on a plane tangent to the body.
The entire body can be represented. Generally the Azimuthal Equidistant map
projection portrays less than one hemisphere, though the other hemisphere can
be portrayed but is much distorted. Has true direction and true distance
scaling from the point of tangency. </value_meaning>
</DD_Permissible_Value>
<DD_Permissible_Value>
<value>Equidistant Conic</value>
<value_meaning>Projection is mathematically based on a cone that is tangent at
one parallel or conceptually secant at two paralle ls. North or South Pole is
represented by an arc. </value_meaning>
</DD_Permissible_Value>
<DD_Permissible_Value>
<value>Equirectangular</value>
<value_meaning>Also called Equidistant Cylindrical, this projection is neither
equal-area or conformal and is known for its very simple construction. Equations only
allow spherical body definitions. The meridians and parallels are all equidistant
straight parallel lines, intersecting at right angles. If the Equator is made the
standard parallel, true to scale and free of distortion, the meridians are spaced at
the same distances as the parallels, and the graticule appears square. This form is
often called the Plate Carree or the Simple Cylindrical projection.</value_meaning>
</DD_Permissible_Value>
<!-- 20181218 T.Hare, removed since this appears to be related and possibly a subset of Point Perspective
<DD_Permissible_Value>
<value>General Vertical Near-sided Projection</value>
<value_meaning>TBD</value_meaning>
</DD_Permissible_Value>
-->
<DD_Permissible_Value>
<value>Gnomonic</value>
<value_meaning>This projection is geometrically projected onto a plane, and
the point of projection is at the center of the body. It is impossible to show
a full hemisphere with one Gnomonic map. It is the only projection in which any
straight line is a great circle, and it is the only projection that shows the
shortest distance between any two points as a straight line. </value_meaning>
</DD_Permissible_Value>
<DD_Permissible_Value>
<value>Lambert Azimuthal Equal Area</value>
<value_meaning>The Lambert Azimuthal Equal-Area projection is mathematically
based on a plane tangent to the body. It is the only projection that can accurately
represent both areas and true direction from the center of the projection. This
projection generally represents only one hemisphere.</value_meaning>
</DD_Permissible_Value>
<DD_Permissible_Value>
<value>Lambert Conformal Conic</value>
<value_meaning>Projection is mathematically based on a cone that is tangent
at one parallel or (more often) that is conceptually secant on two parallels.
Areal distortion is minimal but increases away from the standard parallels.
North or South Pole is represented by a point; the other pole cannot be
shown. Great circle lines are approximately straight. It retains its properties
at various scale and maps can be joined along their edges.</value_meaning>
</DD_Permissible_Value>
<DD_Permissible_Value>
<value>Mercator</value>
<value_meaning>Projection can be thought of as being mathematically based on
a cylinder tangent at the equator. Any straight line is a constant-azimuth
(rhumb) line. Areal enlargement is extreme away from the equator; poles
cannot be represented. Shape is true only within any small area. Reasonably
accurate projection within a 15 degree band along the line of tangency.
</value_meaning>
</DD_Permissible_Value>
<DD_Permissible_Value>
<value>Miller Cylindrical</value>
<value_meaning>Similar to Mercator, this projection is neither equal-area or conformal.
Equations only allow spherical body definitions. The meridians and parallels are straight
lines, intersecting at right angles. Meridians are equidistant and parallels are spaced
farther apart away from Equator. Generally used for global maps.</value_meaning>
</DD_Permissible_Value>
<DD_Permissible_Value>
<value>Oblique Cylindrical</value>
<value_meaning>This projection works by moving the north pole of the simple cylindrical
projection. The pole latitude and longitude are the location of the new north pole,
and the rotation is the equivalent to the center longitude in simple cylindrical.
Because of the supported rotation parameter, this projection is pretty uniquely used in
the planetary community and it is impleneted in USGS's Integrated Software for Imagers
and Spectrometers v2/3 (ISIS3) suite.</value_meaning>
</DD_Permissible_Value>
<DD_Permissible_Value>
<value>Oblique Mercator</value>
<value_meaning>The projection is mathematically based on a cylinder tangent along any
great circle other than the equator or a meridian. Shape is true only within any small
area. Areal enlargement increases away from the line of tangency. Reasonably accurate
projection within a 15 degree band along the line of tangency.</value_meaning>
</DD_Permissible_Value>
<DD_Permissible_Value>
<value>Orthographic</value>
<value_meaning>The Orthographic projection is geometrically based on a plane tangent
to the earth, and the point of projection is at infinity. The body appears as it
would from outer space. This projection is a truly graphic representation of the body
and is a projection in which distortion becomes a visual aid. It is the most familiar
of the azimuthal map projections. Directions from the center of the Orthographic map
projection are true.</value_meaning>
</DD_Permissible_Value>
<DD_Permissible_Value>
<value>Point Perspective</value>
<value_meaning>Simimlar to Orthographic, this projection is often used to show the body
as seen from space. This appears to be the same as the the Vertical Perspective
projection as define in Synder, J.P., 1987, Map Projections: A Working Manual.
Vertical Perspective projections are azimuthal. Central meridian and a particular
parallel (if shown) are straight lines. Other meridians and parallels are usually
arcs of circles or ellipses, but some may be parabolas or hyperbolas. This is neither
conformal or equal-area.</value_meaning>
</DD_Permissible_Value>
<DD_Permissible_Value>
<value>Polar Stereographic</value>
<value_meaning>Related to the Stereographic projection but generally centered directly
at the North or South Pole of the body. This resembles other polar azimuthals,
with straight radiating meridians and concentric circles for parallels. The parallels
are spaced at increasingly wide distances the farther the latitude is from the pole.
</value_meaning>
</DD_Permissible_Value>
<DD_Permissible_Value>
<value>Polyconic</value>
<value_meaning>Projection is mathematically based on an infinite number of cones tangent
to an infinite number of parallels. Distortion increases away from the central meridian.
Has both areal and angular deformation.</value_meaning>
</DD_Permissible_Value>
<DD_Permissible_Value>
<value>Robinson</value>
<value_meaning>Also called orthophanic, Robinson is a compromise projection used for global
maps. Meridians are equally spaced and resemble elliptical arcs, concave toward the central
meridian. The poles are 0.53 times the length of the equator.</value_meaning>
</DD_Permissible_Value>
<DD_Permissible_Value>
<value>Sinusoidal</value>
<value_meaning>Projection is mathematically based on a cylinder tangent on the equator.
Meridian spacing is equal and decreases toward the poles. Parallel spacing is equal.
There is no angular deformation along the central meridian and the equator. Cannot be
edge-joined in an east-west direction if each map has its own central meridian.</value_meaning>
</DD_Permissible_Value>
<DD_Permissible_Value>
<value>Space Oblique Mercator</value>
<value_meaning>The Space Oblique Mercator (SOM) projection visually differs from the
Oblique Mercator projection in that the central line (the groundtrack of the orbiting
satellite) is slightly curved, rather than straight.</value_meaning>
</DD_Permissible_Value>
<DD_Permissible_Value>
<value>Stereographic</value>
<value_meaning>The Stereographic projection is geometrically projected onto a plane,
and the point of the projection is on the surface of the sphere opposite the point
of tangency. Circles on the body appear as straight lines, parts of circles, or circles
on the projection. Directions from the center of the stereographic map projection are
true. Generally only one hemisphere is portrayed.</value_meaning>
</DD_Permissible_Value>
<DD_Permissible_Value>
<value>Transverse Mercator</value>
<value_meaning>Projection is mathematically based on a cylinder tangent to a meridian.
Shape is true only within any small area. Areal enlargment increases away from the
tangent meridian. Reasonably accurate projection within a 15 degree band along the line of
tangency. Cannot be edge-joined in an east-west direction if each map has its own
central meridian.</value_meaning>
</DD_Permissible_Value>
<DD_Permissible_Value>
<value>van der Grinten</value>
<value_meaning>The projection has both areal and angular deformation. It was conceived
as a compromise between the Mercator and the Mollweide projection, which shows the world in
an ellipse. The Vander Grinten shows the world in a circle.</value_meaning>
</DD_Permissible_Value>
</DD_Value_Domain>
</DD_Attribute>
<DD_Attribute>
<name>grid_coordinate_system_name</name>
<version_id>1.0</version_id>
<local_identifier>grid_coordinate_system_name</local_identifier>
<nillable_flag>false</nillable_flag>
<submitter_name>Elizabeth D. Rye</submitter_name>
<definition>The grid_coordinate_system_name attribute provides the name
of the grid coordinate system.</definition>
<DD_Value_Domain>
<enumeration_flag>true</enumeration_flag>
<value_data_type>ASCII_Short_String_Collapsed</value_data_type>
<unit_of_measure_type>Units_of_None</unit_of_measure_type>
<DD_Permissible_Value>
<value>Universal Transverse Mercator</value>
<value_meaning>The UTM is the ellipsoidal Transverse Mercator to which specific parameters,
such as central meridians, have been applied. This is generally used for Earth. The Earth,
between lats. 84 degrees North and 80 degrees South, is divided into 60 zones each generally 6 degrees wide in longitude.
Bounding meridians are evenly divisible by 6 degrees, and zones are numbered from 1 to 60 proceeding
east from the 180th meridian from Greenwich with minor exceptions.</value_meaning>
</DD_Permissible_Value>
<DD_Permissible_Value>
<value>Universal Polar Stereographic</value>
<value_meaning>Like Universal Transverse Mercator (UTM), UPS is a method to split up the Earth
into quads. When the latitude is from 84 degrees North and 80 degrees South to the respective poles, the (UPS)
projection is used.</value_meaning>
</DD_Permissible_Value>
<DD_Permissible_Value>
<value>State Plane Coordinate System 1927</value>
<value_meaning>In the United States, it is the projection used in the State Plane Coordinate
System (SPCS) for States with predominant north-south extent. (The Lambert Conformal Conic
is used for the others, except for the panhandle of Alaska, which is prepared on the Oblique
Mercator. Alaska, Florida, and New York use both the Transverse Mercator and the Lambert
Conformal Conic for different zones.) Except for narrow States, such as Delaware, New Hampshire,
and New Jersey, all States using the Transverse Mercator are divided into two to eight zones,
each with its own central meridian, along which the scale is slightly reduced to balance
the scale throughout the map. Each zone is designed to maintain scale distortion within 1 part
in 10,000. 1927 refers to the use of the 1927 North American Datum (NAD27).</value_meaning>
</DD_Permissible_Value>
<DD_Permissible_Value>
<value>State Plane Coordinate System 1983</value>
<value_meaning>In the United States, it is the projection used in the State Plane Coordinate
System (SPCS) for States with predominant north-south extent. (The Lambert Conformal Conic
is used for the others, except for the panhandle of Alaska, which is prepared on the Oblique
Mercator. Alaska, Florida, and New York use both the Transverse Mercator and the Lambert
Conformal Conic for different zones.) Except for narrow States, such as Delaware, New Hampshire,
and New Jersey, all States using the Transverse Mercator are divided into two to eight zones,
each with its own central meridian, along which the scale is slightly reduced to balance
the scale throughout the map. Each zone is designed to maintain scale distortion within 1 part
in 10,000. 1983 refers to the use of the 1983 North American Datum (NAD83).</value_meaning>
</DD_Permissible_Value>
<DD_Permissible_Value>
<value>ARC Coordinate System</value>
<value_meaning>the Equal Arc-second Coordinate System, a plane-rectangular coordinate system
established in Department of Defense, 1990.</value_meaning>
</DD_Permissible_Value>
<DD_Permissible_Value>
<value>Other Grid System</value>
<value_meaning>a complete description of a grid system, not defined elsewhere in this standard,
that was used for the data set. The information provided shall include the name of the grid
system, the names of the parameters and values used for the data set, and the citation of the
specification for the algorithms that describe the mathematical relationship between the body
and the coordinates of the grid system.</value_meaning>
</DD_Permissible_Value>
</DD_Value_Domain>
</DD_Attribute>
<DD_Attribute>
<name>local_planar_description</name>
<version_id>1.0</version_id>
<local_identifier>local_planar_description</local_identifier>
<nillable_flag>false</nillable_flag>
<submitter_name>Elizabeth D. Rye</submitter_name>
<definition>The local_planar_description attribute provides a description of the local planar system.</definition>
<DD_Value_Domain>
<enumeration_flag>false</enumeration_flag>
<value_data_type>ASCII_Text_Preserved</value_data_type>
<unit_of_measure_type>Units_of_None</unit_of_measure_type>
</DD_Value_Domain>
</DD_Attribute>
<DD_Attribute>
<name>local_planar_georeference_information</name>
<version_id>1.0</version_id>
<local_identifier>local_planar_georeference_information</local_identifier>
<nillable_flag>false</nillable_flag>
<submitter_name>Elizabeth D. Rye</submitter_name>
<definition>The local_planar_georeference_information attribute
provides a description of the information provided to register the
local planar system to a planet (e.g. control points, satellite
ephemeral data, inertial navigation data).</definition>
<DD_Value_Domain>
<enumeration_flag>false</enumeration_flag>
<value_data_type>ASCII_Text_Preserved</value_data_type>
<unit_of_measure_type>Units_of_None</unit_of_measure_type>
</DD_Value_Domain>
</DD_Attribute>
<!-- 20151021: Per C.Isbell - removed 'cart.abscissa_resolution'
<DD_Attribute>
<name>abscissa_resolution</name>
<version_id>1.0</version_id>