-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathLoad unfiltered data.Rmd
327 lines (234 loc) · 14.7 KB
/
Load unfiltered data.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
---
title: "CITE-seq optimization - Load unfiltered data"
author: "Terkild Brink Buus"
date: "30/3/2020"
output: github_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(warning=FALSE, message=FALSE)
options(stringsAsFactors=FALSE)
```
## Load utilities
Including libraries, plotting and color settings and custom utility functions
```{r loadLibraries, results='hide', message=FALSE, warning=FALSE}
set.seed(114)
require("Seurat", quietly=T)
require("tidyverse", quietly=T)
library("Matrix", quietly=T)
library("DropletUtils", quietly=T)
## Load ggplot theme and defaults
source("R/ggplot_settings.R")
## Load helper functions
source("R/Utilities.R")
read_kallisto_data <- function(file.path){
## Load mtx and transpose it
res_mat <- as(t(readMM(file.path(file.path,"cells_x_genes.mtx"))), 'CsparseMatrix')
## Attach genes
rownames(res_mat) <- read.csv(file.path(file.path,"cells_x_genes.genes.txt"), sep = '\t', header = F)[,1]
## Attach barcodes
colnames(res_mat) <- read.csv(file.path(file.path,"cells_x_genes.barcodes.txt"), header = F, sep = '\t')[,1]
return(res_mat)
}
```
## Set file paths
How the different aligned and counted read outputs from various algorithms were generated using Snakemake and can be seen in the included [Snakefile](Snakefile)
```{r}
data.drive <- "F:/"
data.project.dir <- "Projects/ECCITE-seq/TotalSeqC_TitrationA"
outdir <- "figures"
t2g.file <- file.path(data.drive,data.project.dir,"/kallisto/t2g_cellranger.txt")
kallistobusDir <- file.path(data.drive,data.project.dir,"kallisto/gex/c1/counts_unfiltered")
## ADT data
kallistobusDirADT <- file.path(data.drive,data.project.dir,"kallisto/features/A1_S5.ADT_15/counts_unfiltered")
data10XADTDir <- file.path(data.drive,data.project.dir,"cellranger_A1/outs/raw_feature_bc_matrix")
dataCSCADTDir <- file.path(data.drive,data.project.dir,"cite-seq-count/A1_S5_d1_ADT/umi_count")
dataCSCADTDir.dense <- file.path(data.drive,data.project.dir,"cite-seq-count/A1_S5_d1_ADT/uncorrected_cells/dense_umis.tsv")
dataCSCADTnocorrectDir <- file.path(data.drive,data.project.dir,"cite-seq-count/A1_S5_d1_ADT_nocorrect/umi_count")
dataCSCADTnocorrectDir.dense <- file.path(data.drive,data.project.dir,"cite-seq-count/A1_S5_d1_ADT_nocorrect/uncorrected_cells/dense_umis.tsv")
## HTO data
kallistobusDirHTO <- file.path(data.drive,data.project.dir,"kallisto/features/H1_S6.HTO_A_13/counts_unfiltered")
data10XHTODir <- file.path(data.drive,data.project.dir,"cellranger_H1/outs/raw_feature_bc_matrix")
dataCSCHTODir <- file.path(data.drive,data.project.dir,"cite-seq-count/H1_S6_d1_HTO/umi_count")
dataCSCHTODir.dense <- file.path(data.drive,data.project.dir,"cite-seq-count/H1_S6_d1_HTO/uncorrected_cells/dense_umis.tsv")
dataCSCHTOnocorrectDir <- file.path(data.drive,data.project.dir,"cite-seq-count/H1_S6_d1_HTO_nocorrect/umi_count")
dataCSCHTOnocorrectDir.dense <- file.path(data.drive,data.project.dir,"cite-seq-count/H1_S6_d1_HTO_nocorrect/uncorrected_cells/dense_umis.tsv")
## 10X datasets
data.10X.dir <- file.path(data.drive,"data","10XDatasets")
```
# TITRATION DATASET
## Load GEX data
From kallisto-bustools output. Modified from <https://github.com/Sarah145/scRNA_pre_process>
```{r loadGEX}
raw_mtx <- read_kallisto_data(kallistobusDir)
t2g <- unique(read.csv(t2g.file, sep = '\t', header=F)[,2:3]) # load t2g file
t2g <- data.frame(t2g[,2], row.names = t2g[,1])
gene_sym <- t2g[as.character(rownames(raw_mtx)),1] # get symbols for gene ids
## Which rows have same gene symbol (but different Ensembl gene id)
gene_sym.duplicated <- which(gene_sym %in% gene_sym[which(duplicated(gene_sym))])
## Which genes are have duplicated entries
gene_sym.duplicated.unique <- unique(gene_sym[gene_sym.duplicated])
## Make placeholder matrix for duplicate gene symbols
raw_mtx_dedup <- Matrix(data=0,nrow=length(gene_sym.duplicated.unique),ncol=ncol(raw_mtx))
rownames(raw_mtx_dedup) <- gene_sym.duplicated.unique
colnames(raw_mtx_dedup) <- colnames(raw_mtx)
## Combine counts from genes with same gene symbol (but different Ensembl gene id)
for(i in seq_along(gene_sym.duplicated)){
curGene <- gene_sym[gene_sym.duplicated[i]]
curRow <- gene_sym.duplicated.unique == curGene
raw_mtx_dedup[curRow,] <- raw_mtx_dedup[curRow,] + raw_mtx[gene_sym.duplicated[i],]
}
## Merged combined counts duplicate gene symbol with matrix of unique gene symbol counts
raw_mtx <- raw_mtx[-gene_sym.duplicated,]
rownames(raw_mtx) <- gene_sym[-gene_sym.duplicated]
raw_mtx <- rbind(raw_mtx,raw_mtx_dedup)
tot_counts <- Matrix::colSums(raw_mtx)
bc_rank <- DropletUtils::barcodeRanks(raw_mtx, lower = 10)
gex.inflection <- S4Vectors::metadata(bc_rank)[["inflection"]]
gex.aboveInf <- names(which(tot_counts > gex.inflection))
GEX.knee_plot <- knee_plot_auc(bc_rank)
GEX.knee_plot
kallisto.GEX <- raw_mtx
```
## Load ADT data from titration dataset
```{r loadADT}
ADT.res_mat <- read_kallisto_data(kallistobusDirADT)
ADT.tot_counts <- Matrix::colSums(ADT.res_mat)
ADT.bc_rank <- DropletUtils::barcodeRanks(ADT.res_mat, lower = 10)
ADT.knee_plot <- knee_plot_highlight(ADT.bc_rank, highlight=gex.aboveInf)
ADT.knee_plot
kallisto.ADT <- ADT.res_mat
cellranger.ADT <- Read10X(data.dir=data10XADTDir)
CSC.ADT <- Read10X(data.dir=dataCSCADTDir, gene.column=1)
CSC.ADT.dense <- read.table(file=dataCSCADTDir.dense)
CSC.ADT <- cbind(CSC.ADT,CSC.ADT.dense)
CSC.ADT <- CSC.ADT[rownames(CSC.ADT) != "unmapped",]
CSC.ADT.uncorrected <- Read10X(data.dir=dataCSCADTnocorrectDir, gene.column=1)
CSC.ADT.uncorrected.dense <- read.table(file=dataCSCADTnocorrectDir.dense)
CSC.ADT.uncorrected <- cbind(CSC.ADT.uncorrected,CSC.ADT.uncorrected.dense)
CSC.ADT.uncorrected <- CSC.ADT.uncorrected[rownames(CSC.ADT.uncorrected) != "unmapped",]
```
## Load HTO data from titration dataset
```{r loadHTO}
HTO.res_mat <- read_kallisto_data(kallistobusDirHTO)
HTO.tot_counts <- Matrix::colSums(HTO.res_mat)
HTO.bc_rank <- DropletUtils::barcodeRanks(HTO.res_mat, lower = 10)
HTO.knee_plot <- knee_plot_highlight(HTO.bc_rank, highlight=gex.aboveInf)
HTO.knee_plot
kallisto.HTO <- HTO.res_mat
knee_plots_combined <- cowplot::plot_grid(GEX.knee_plot, ADT.knee_plot, HTO.knee_plot, labels=c("mRNA","ADT","HTO"), nrow=1, label_size=panel.label_size-1, vjust=panel.label_vjust, hjust=panel.label_hjust)
png(file=file.path(outdir,"Supplementary Figure S5.png"), width=figure.width.full, height=2.5, units=figure.unit, res=figure.resolution, antialias=figure.antialias)
knee_plots_combined
dev.off()
cellranger.HTO <- Read10X(data.dir=data10XHTODir)
CSC.HTO <- Read10X(data.dir=dataCSCHTODir, gene.column=1)
CSC.HTO.dense <- read.table(file=dataCSCHTODir.dense)
CSC.HTO <- cbind(CSC.HTO,CSC.HTO.dense)
CSC.HTO <- CSC.HTO[rownames(CSC.HTO) != "unmapped",]
CSC.HTO.uncorrected <- Read10X(data.dir=dataCSCHTOnocorrectDir, gene.column=1)
CSC.HTO.uncorrected.dense <- read.table(file=dataCSCHTOnocorrectDir.dense)
CSC.HTO.uncorrected <- cbind(CSC.HTO.uncorrected,CSC.HTO.uncorrected.dense)
CSC.HTO.uncorrected <- CSC.HTO.uncorrected[rownames(CSC.HTO.uncorrected) != "unmapped",]
```
# 10X DATASETS
## Load GEX data from 10X datasets
```{r}
data.10X.datasets <- c("PBMC_1k_GEXFeature_v3","PBMC_10k_GEXFeature_v3","PBMC_GEXFeatureVDJ_v1")
data.10X.datasets.dir <- file.path(data.10X.dir,data.10X.datasets)
names(data.10X.datasets.dir) <- data.10X.datasets
## Load gene expression data to distinguish cell-containing droplets from empty-droplets
data.10X.datasets.gex.dir <- file.path(data.10X.datasets.dir,"raw_feature_bc_matrix")
names(data.10X.datasets.gex.dir) <- data.10X.datasets
data.10X.datasets.gex <- lapply(data.10X.datasets.gex.dir, function(dir)Read10X(data.dir=dir)$`Gene Expression`)
data.10X.datasets.gex.bc_rank <- lapply(data.10X.datasets.gex,function(raw_mtx)DropletUtils::barcodeRanks(raw_mtx, lower = 10))
data.10X.datasets.gex.tot_counts <- lapply(data.10X.datasets.gex,function(raw_mtx)tot_counts <- Matrix::colSums(raw_mtx))
## Get inflection points
data.10X.datasets.gex.inflection <- sapply(data.10X.datasets.gex.bc_rank,function(bc_rank)S4Vectors::metadata(bc_rank)[["inflection"]])
## Extract barcodes above inflection point
data.10X.datasets.gex.aboveInf <- sapply(data.10X.datasets, function(dataset)names(which(data.10X.datasets.gex.tot_counts[[dataset]] > data.10X.datasets.gex.inflection[dataset])))
data.10X.datasets.gex.aboveInf.index <- sapply(data.10X.datasets, function(dataset)which(data.10X.datasets.gex.tot_counts[[dataset]] > data.10X.datasets.gex.inflection[dataset]))
identical(colnames(data.10X.datasets.gex[[1]])[data.10X.datasets.gex.aboveInf.index[[1]]],data.10X.datasets.gex.aboveInf[[1]])
sapply(data.10X.datasets.gex.aboveInf,length)
## Draw knee plots
data.10X.datasets.knee_plots <- lapply(data.10X.datasets.gex.bc_rank,function(x)knee_plot_auc(x)+theme(legend.position="none"))
rm(data.10X.datasets.gex)
rm(data.10X.datasets.gex.bc_rank)
rm(data.10X.datasets.gex.tot_counts)
```
## Load Kallisto ADT data
10Xv3 chemestry needs to translate feature barcodes to GEX barcodes to be compatible. Traslation matrix can be downloaded here: https://github.com/10XGenomics/cellranger/blob/master/lib/python/cellranger/barcodes/translation/3M-february-2018.txt.gz
```{r}
## Translate V3 feature barcodes into cell barcodes for using
translateV3 <- read.table("F:/data/10XDatasets/10xv3_feature_to_gex_barcode_translation.txt", header=FALSE)
translateV3.names <- translateV3[,1]
translateV3 <- translateV3[,2]
names(translateV3) <- translateV3.names
data.10X.datasets.adt.kallisto.dir <- sapply(data.10X.datasets.dir,function(datasetDir)dir(path=file.path(datasetDir,"kallisto","features"), pattern="counts_unfiltered", recursive=TRUE, full.names=TRUE, include.dirs=TRUE))
data.10X.datasets.adt.kallisto <- lapply(data.10X.datasets.adt.kallisto.dir,function(dir)read_kallisto_data(dir))
lapply(data.10X.datasets.adt.kallisto,dim)
data.10X.datasets.adt.kallisto[grep("_v3$",data.10X.datasets)] <- lapply(data.10X.datasets.adt.kallisto[grep("_v3$",data.10X.datasets)],function(data){colnames(data) <- translateV3[colnames(data)]; return(data)})
data.10X.datasets.adt.kallisto.bc_rank <- lapply(data.10X.datasets.adt.kallisto,function(raw_mtx)DropletUtils::barcodeRanks(raw_mtx, lower = 10))
adt.kallist.aboveInf <- names(which(Matrix::colSums(data.10X.datasets.adt.kallisto[[1]]) > S4Vectors::metadata(data.10X.datasets.adt.kallisto.bc_rank[[1]])[["inflection"]]))
knee_plots.adt.kallisto <- lapply(data.10X.datasets.adt.kallisto.bc_rank,knee_plot)
cowplot::plot_grid(plotlist=knee_plots.adt.kallisto, nrow=1)
```
## Load CSC ADT data
```{r}
data.10X.datasets.adt.csc.dir <- sapply(data.10X.datasets.dir,function(datasetDir)dir(path=file.path(datasetDir,"cite-seq-count"), pattern="umi_count", recursive=TRUE, full.names=TRUE, include.dirs=TRUE))
data.10X.datasets.adt.csc.dense.dir <- sapply(data.10X.datasets.dir,function(datasetDir)list.files(path=file.path(datasetDir,"cite-seq-count"), pattern="dense_umis.tsv", recursive=TRUE, full.names=TRUE, include.dirs=FALSE))
data.10X.datasets.adt.csc_nc.dir <- grep("_nocorrect",data.10X.datasets.adt.csc.dir, value=TRUE)
data.10X.datasets.adt.csc_nc.dense.dir <- grep("_nocorrect",data.10X.datasets.adt.csc.dense.dir, value=TRUE)
names(data.10X.datasets.adt.csc_nc.dir) <- data.10X.datasets
names(data.10X.datasets.adt.csc_nc.dense.dir) <- data.10X.datasets
data.10X.datasets.adt.csc.dir <- setdiff(data.10X.datasets.adt.csc.dir, data.10X.datasets.adt.csc_nc.dir)
data.10X.datasets.adt.csc.dense.dir <- setdiff(data.10X.datasets.adt.csc.dense.dir, data.10X.datasets.adt.csc_nc.dense.dir)
names(data.10X.datasets.adt.csc.dir) <- data.10X.datasets
names(data.10X.datasets.adt.csc.dense.dir) <- data.10X.datasets
data.10X.datasets.adt.csc <- lapply(data.10X.datasets.adt.csc.dir,function(dir)Read10X(data.dir=dir, gene.column=1))
data.10X.datasets.adt.csc.dense <- lapply(data.10X.datasets.adt.csc.dense.dir,function(dir)read.table(file=dir))
data.10X.datasets.adt.csc <- lapply(data.10X.datasets,function(dataset)Matrix::cbind2(data.10X.datasets.adt.csc[[dataset]],Matrix::Matrix(as.matrix(data.10X.datasets.adt.csc.dense[[dataset]]))))
names(data.10X.datasets.adt.csc) <- data.10X.datasets
data.10X.datasets.adt.csc <- lapply(data.10X.datasets.adt.csc,function(data)data[rownames(data) != "unmapped",])
data.10X.datasets.adt.csc[grep("_v3$",data.10X.datasets)] <- lapply(data.10X.datasets.adt.csc[grep("_v3$",data.10X.datasets)],function(data){colnames(data) <- translateV3[colnames(data)]; return(data)})
data.10X.datasets.adt.csc_nc <- lapply(data.10X.datasets.adt.csc_nc.dir,function(dir)Read10X(data.dir=dir, gene.column=1))
data.10X.datasets.adt.csc_nc.dense <- lapply(data.10X.datasets.adt.csc_nc.dense.dir,function(dir)read.table(file=dir))
data.10X.datasets.adt.csc_nc <- lapply(data.10X.datasets,function(dataset)Matrix::cbind2(data.10X.datasets.adt.csc_nc[[dataset]],Matrix::Matrix(as.matrix(data.10X.datasets.adt.csc_nc.dense[[dataset]]))))
names(data.10X.datasets.adt.csc_nc) <- data.10X.datasets
data.10X.datasets.adt.csc_nc <- lapply(data.10X.datasets.adt.csc_nc,function(data)data[rownames(data) != "unmapped",])
data.10X.datasets.adt.csc_nc[grep("_v3$",data.10X.datasets)] <- lapply(data.10X.datasets.adt.csc_nc[grep("_v3$",data.10X.datasets)],function(data){colnames(data) <- translateV3[colnames(data)]; return(data)})
data.10X.datasets.adt.csc.bc_rank <- lapply(data.10X.datasets.adt.csc,function(raw_mtx)DropletUtils::barcodeRanks(raw_mtx, lower = 10))
knee_plots.adt.csc <- lapply(data.10X.datasets.adt.csc.bc_rank,knee_plot)
cowplot::plot_grid(plotlist=knee_plots.adt.csc, nrow=1)
```
## Load CellRanger featureOnly ADT data
```{r}
data.10X.datasets.adt.cellranger.dir <- sapply(data.10X.datasets.dir,function(datasetDir)dir(path=file.path(datasetDir), pattern="raw_feature_bc_matrix", recursive=TRUE, full.names=TRUE, include.dirs=TRUE)[1])
data.10X.datasets.adt.cellranger <- lapply(data.10X.datasets.adt.cellranger.dir,function(dir)Read10X(dir))
lapply(data.10X.datasets.adt.cellranger,dim)
data.10X.datasets.adt.cellranger.bc_rank <- lapply(data.10X.datasets.adt.cellranger,function(raw_mtx)DropletUtils::barcodeRanks(raw_mtx, lower = 10))
knee_plots.adt.cellranger <- lapply(data.10X.datasets.adt.cellranger.bc_rank,knee_plot)
cowplot::plot_grid(plotlist=knee_plots.adt.cellranger, nrow=1)
cowplot::plot_grid(plotlist=c(knee_plots.adt.cellranger,knee_plots.adt.csc,knee_plots.adt.kallisto), labels=data.10X.datasets, nrow=3)
```
## Save data
```{r}
save(file="data/data.10X.datasets.Rdata",
data.10X.datasets,
data.10X.datasets.adt.kallisto,
data.10X.datasets.adt.csc,
data.10X.datasets.adt.csc_nc,
data.10X.datasets.adt.cellranger,
data.10X.datasets.gex.aboveInf,
data.10X.datasets.knee_plots)
save(file="data/data.HTO.Rdata",
kallisto.HTO,
cellranger.HTO,
CSC.HTO,
CSC.HTO.uncorrected,
gex.aboveInf)
save(file="data/data.ADT.Rdata",
kallisto.ADT,
cellranger.ADT,
CSC.ADT,
CSC.ADT.uncorrected,
gex.aboveInf)
```