TL;DR: We present ViT-Lens, an approach for advancing omni-modal representation learning by leveraging a pretrained-ViT with modality Lens to comprehend diverse modalities.
- [2023.12.13] We release training code and models of ViT-Lens.
- [2023.11.28] We upgrade ViT-Lens, with added modalities and applications. Stay tuned for the release of code and models [
arXiv paper
]. - [2023.08.22] We release the arXiv paper, inference codes and checkpoints for 3D [
arXiv paper
].
- Models for more modalities.
- Code for ViT-Lens integration with InstructBLIP and SEED.
- Online demo for ViT-Lens integration with InstructBLIP and SEED.
conda create -n vit-lens python=3.8.8 -y
conda activate vit-lens
# Install pytorch>=1.9.0
conda install pytorch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0 cudatoolkit=11.3 -c pytorch -y
# Install ViT-Lens
git clone https://github.com/TencentARC/ViT-Lens.git
cd ViT-Lens/
pip install -e vitlens/
pip install -r vitlens/requirements-training.txt
Training/Inference on OpenShape Triplets on 3D point clouds: environment setup (click to expand)
conda create -n vit-lens python=3.8.8 -y
conda activate vit-lens
conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.3 -c pytorch -y
conda install -c dglteam/label/cu113 dgl -y
# Install ViT-Lens
git clone https://github.com/TencentARC/ViT-Lens.git
cd ViT-Lens/
pip install -e vitlens/
pip install -r vitlens/requirements-training.txt
MN40 | SUN.D | NYU.D | Audioset | VGGSound | ESC50 | Clotho | AudioCaps | TAG.M | IN.EEG | Download | |
---|---|---|---|---|---|---|---|---|---|---|---|
ImageBind(Huge) | - | 35.1 | 54.0 | 17.6 | 27.8 | 66.9 | 6.0/28.4 | 9.3/42.3 | - | - | - |
ViT-Lens-L | 80.6 | 52.2 | 68.5 | 26.7 | 31.7 | 75.9 | 8.1/31.2 | 14.4/54.9 | 65.8 | 42.7 | vitlensL |
We release a one-stop ViT-Lens-L
model (based on Large ViT) and show its performance on ModelNet40 (MN40, top1 accuracy), SUN RGBD Depth-only (SUN.D, top1 accuracy), NYUv2 Depth-only (NYU.D, top1 accuracy), Audioset (Audioset, mAP), VGGSound (VGGSound, top1 accuracy), ESC50 (ESC50, top1 accuracy), Clotho (Clotho, R@1/R@10), AudioCaps (AudioCaps, R@1/R@10), TAG.M (Touch-and-Go Material, top1 accuracy) and IN.EEG (ImageNet EEG, top1 accuracy). ViT-Lens consistently outperforms ImageBind.
For more model checkpoints (trained on different data or with better performance), please refer to MODEL_ZOO.md.
- You may set your paths for you own project in constants.py.
- We provide an API (source file) and provide an example (here) for reference. You can use ViT-Lens to extract and compare features across modalities:
import os import torch from open_clip import ModalityType from mm_vit_lens import ViTLens here = os.path.abspath(os.path.dirname(__file__)) model = ViTLens(modality_loaded=[ModalityType.IMAGE, ModalityType.AUDIO, ModalityType.TEXT, ModalityType.PC]) device = "cuda:0" if torch.cuda.is_available() else "cpu" model = model.to(device) # Example 1 images = [ os.path.join(here, "assets/example/image_bird.jpg"), os.path.join(here, "assets/example/image_fire.jpg"), os.path.join(here, "assets/example/image_dog.jpg"), os.path.join(here, "assets/example/image_beach.jpg"), ] audios = [ os.path.join(here, "assets/example/audio_chirping_birds.flac"), os.path.join(here, "assets/example/audio_crackling_fire.flac"), os.path.join(here, "assets/example/audio_dog.flac"), os.path.join(here, "assets/example/audio_sea_wave.flac"), ] texts = [ "a bird", "crackling fire", "a dog", "sea wave", ] inputs_1 = { ModalityType.IMAGE: images, ModalityType.AUDIO: audios, ModalityType.TEXT: texts, } with torch.no_grad(), torch.cuda.amp.autocast(): outputs_1 = model.encode(inputs_1, normalize=True) sim_at = torch.softmax(100 * outputs_1[ModalityType.AUDIO] @ outputs_1[ModalityType.TEXT].T, dim=-1) print( "Audio x Text:\n", sim_at ) # Expected output # Audio x Text: # tensor([[9.9998e-01, 9.3977e-07, 2.1545e-05, 9.3642e-08], # [3.8017e-09, 1.0000e+00, 3.1551e-09, 6.9498e-10], # [9.4895e-03, 1.3270e-06, 9.9051e-01, 2.5545e-07], # [9.7020e-06, 6.4767e-07, 2.8860e-06, 9.9999e-01]], device='cuda:0') sim_ai = torch.softmax(100 * outputs_1[ModalityType.AUDIO] @ outputs_1[ModalityType.IMAGE].T, dim=-1) print( "Audio x Image:\n", sim_ai ) # Expected output # Audio x Image: # tensor([[1.0000e+00, 1.5798e-06, 2.0614e-06, 1.6502e-07], # [2.3712e-09, 1.0000e+00, 1.4446e-10, 1.2260e-10], # [4.9333e-03, 1.2942e-02, 9.8212e-01, 1.8582e-06], # [6.8347e-04, 1.0547e-02, 1.3476e-05, 9.8876e-01]], device='cuda:0') # Example 2 pcs = [ os.path.join(here, "assets/example/pc_car_0260.npy"), os.path.join(here, "assets/example/pc_guitar_0243.npy"), os.path.join(here, "assets/example/pc_monitor_0503.npy"), os.path.join(here, "assets/example/pc_person_0102.npy"), os.path.join(here, "assets/example/pc_piano_0286.npy"), ] text_pcs = ["a car", "a guitar", "a monitor", "a person", "a piano"] inputs_2 = { ModalityType.PC: pcs, ModalityType.TEXT: text_pcs, } with torch.no_grad(), torch.cuda.amp.autocast(): outputs_2 = model.encode(inputs_2, normalize=True) sim_pc_t = torch.softmax(100 * outputs_2[ModalityType.PC] @ outputs_2[ModalityType.TEXT].T, dim=-1) print( "PointCould x Text:\n", sim_pc_t ) # Expected output: # PointCould x Text: # tensor([[9.9945e-01, 1.0483e-05, 1.4904e-04, 2.3988e-05, 3.7041e-04], # [1.2574e-09, 1.0000e+00, 6.8450e-09, 2.6463e-08, 3.3659e-07], # [6.2730e-09, 1.9918e-06, 9.9999e-01, 6.7161e-06, 4.9279e-06], # [1.8846e-06, 7.4831e-06, 4.4594e-06, 9.9998e-01, 7.9092e-06], # [1.2218e-08, 1.5571e-06, 1.8991e-07, 1.7521e-08, 1.0000e+00]], # device='cuda:0')
Please refer to DATASETS.md for dataset preparation.
Please refer to TRAIN_INFERENCE.md for details.
Please refer to MODEL_ZOO.md for details.
If you find our work helps, please give us a star🌟 and consider citing:
@InProceedings{Lei_2024_CVPR,
author = {Lei, Weixian and Ge, Yixiao and Yi, Kun and Zhang, Jianfeng and Gao, Difei and Sun, Dylan and Ge, Yuying and Shan, Ying and Shou, Mike Zheng},
title = {ViT-Lens: Towards Omni-modal Representations},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2024},
pages = {26647-26657}
}
Questions and discussions are welcome via [email protected] or open an issue.
This codebase is based on open_clip, ULIP, OpenShape and LAVIS. Big thanks to the authors for their awesome contributions!