-
Notifications
You must be signed in to change notification settings - Fork 514
/
Copy pathtrain.py
279 lines (240 loc) · 11 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
"""
Tencent is pleased to support the open source community by making Tencent ML-Images available.
Copyright (C) 2018 THL A29 Limited, a Tencent company. All rights reserved.
Licensed under the BSD 3-Clause License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at
https://opensource.org/licenses/BSD-3-Clause
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
"""
"""Runs a ResNet model on the ImageNet dataset."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
import math
import numpy as np
import tensorflow as tf
from data_processing import dataset as file_db
from data_processing import image_preprocessing as image_preprocess
from models import resnet as resnet
from flags import FLAGS
def record_parser_fn(value, is_training):
"""Parse an image record from `value`."""
keys_to_features = {
'width': tf.FixedLenFeature([], dtype=tf.int64, default_value=0),
'height': tf.FixedLenFeature([], dtype=tf.int64, default_value=0),
'image': tf.FixedLenFeature([], dtype=tf.string, default_value=''),
'label': tf.FixedLenFeature([], dtype=tf.string, default_value=''),
'name': tf.FixedLenFeature([], dtype=tf.string, default_value='')
}
parsed = tf.parse_single_example(value, keys_to_features)
image = tf.image.decode_image(tf.reshape(parsed['image'], shape=[]),
FLAGS.image_channels)
image = tf.image.convert_image_dtype(image, dtype=tf.float32)
bbox = tf.concat(axis=0, values=[ [[]], [[]], [[]], [[]] ])
bbox = tf.transpose(tf.expand_dims(bbox, 0), [0, 2, 1])
image = image_preprocess.preprocess_image(
image=image,
output_height=FLAGS.image_size,
output_width=FLAGS.image_size,
object_cover=0.7,
area_cover=0.7,
is_training=is_training,
bbox=bbox)
label = tf.reshape(tf.decode_raw(parsed['label'], tf.float32), shape=[FLAGS.class_num,])
return image, label
def input_fn(is_training, data_dir, batch_size, num_epochs=1):
"""Input function which provides batches for train or eval."""
dataset = None
if is_training:
dataset = file_db.Dataset(os.path.join(data_dir, 'train'))
else:
dataset = file_db.Dataset(os.path.join(data_dir, 'val'))
worker_id = 0
worker_num = 1
dataset = tf.data.Dataset.from_tensor_slices(dataset.data_files())
# divide the dataset
if is_training:
dataset = dataset.shuffle(buffer_size=FLAGS.file_shuffle_buffer, seed=worker_num)
dataset = dataset.shard(worker_num, worker_id)
dataset = dataset.flat_map(tf.data.TFRecordDataset)
dataset = dataset.map(lambda value: record_parser_fn(value, is_training),
num_parallel_calls=5)
dataset = dataset.prefetch(batch_size)
if is_training:
# When choosing shuffle buffer sizes, larger sizes result in better
# randomness, while smaller sizes have better performance.
# dataset = dataset.shuffle(buffer_size=_SHUFFLE_BUFFER, seed=worker_id)
dataset = dataset.shuffle(buffer_size=FLAGS.shuffle_buffer)
# We call repeat after shuffling, rather than before, to prevent separate
# epochs from blending together.
dataset = dataset.repeat()
dataset = dataset.batch(batch_size)
iterator = dataset.make_one_shot_iterator()
images, labels = iterator.get_next()
return images, labels
def resnet_model_fn(features, labels, mode, params):
"""Our model_fn for ResNet to be used with our Estimator."""
tf.summary.image('images', features, max_outputs=6)
# build model
net = resnet.ResNet(features, is_training=(mode == tf.estimator.ModeKeys.TRAIN))
logits = net.build_model()
predictions = {
'classes': tf.argmax(logits, axis=1),
'probabilities': tf.nn.softmax(logits, name='softmax_tensor')
}
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)
# Calculate loss, which includes softmax cross entropy and L2 regularization.
# a. get loss coeficiente
pos_mask = tf.reduce_sum(
tf.cast(
tf.greater_equal(
labels, tf.fill(tf.shape(labels), FLAGS.mask_thres)),
tf.float32),
0)
pos_curr_count = tf.cast(tf.greater( pos_mask, 0), tf.float32)
neg_curr_count = tf.cast(tf.less_equal(pos_mask, 0), tf.float32)
pos_count = tf.Variable(tf.zeros(shape=[FLAGS.class_num,]), trainable=False)
neg_count = tf.Variable(tf.zeros(shape=[FLAGS.class_num,]), trainable=False)
neg_select = tf.cast(
tf.less_equal(
tf.random_uniform(
shape=[FLAGS.class_num,],
minval=0, maxval=1,
seed = FLAGS.random_seed),
FLAGS.neg_select),
tf.float32)
tf.summary.histogram('pos_curr_count', pos_curr_count)
tf.summary.histogram('neg_curr_count', neg_curr_count)
tf.summary.histogram('neg_select', neg_select)
with tf.control_dependencies([pos_curr_count, neg_curr_count, neg_select]):
pos_count = tf.assign_sub(
tf.assign_add(pos_count, pos_curr_count),
tf.multiply(pos_count, neg_curr_count))
neg_count = tf.assign_sub(
tf.assign_add(neg_count, tf.multiply(neg_curr_count, neg_select)),
tf.multiply(neg_count, pos_curr_count))
tf.summary.histogram('pos_count', pos_count)
tf.summary.histogram('neg_count', neg_count)
pos_loss_coef = -1 * (tf.log((0.01 + pos_count)/10)/tf.log(10.0))
pos_loss_coef = tf.where(
tf.greater(pos_loss_coef, tf.fill(tf.shape(pos_loss_coef), 0.01)),
pos_loss_coef,
tf.fill(tf.shape(pos_loss_coef), 0.01))
pos_loss_coef = tf.multiply(pos_loss_coef, pos_curr_count)
tf.summary.histogram('pos_loss_coef', pos_loss_coef)
neg_loss_coef = -1 * (tf.log((8 + neg_count)/10)/tf.log(10.0))
neg_loss_coef = tf.where(
tf.greater(neg_loss_coef, tf.fill(tf.shape(neg_loss_coef), 0.01)),
neg_loss_coef,
tf.fill(tf.shape(neg_loss_coef), 0.001))
neg_loss_coef = tf.multiply(neg_loss_coef, tf.multiply(neg_curr_count, neg_select))
tf.summary.histogram('neg_loss_coef', neg_loss_coef)
loss_coef = tf.add(pos_loss_coef, neg_loss_coef)
tf.summary.histogram('loss_coef', loss_coef)
# b. get non-negative mask
non_neg_mask = tf.fill(tf.shape(labels), -1.0, name='non_neg')
non_neg_mask = tf.cast(tf.not_equal(labels, non_neg_mask), tf.float32)
tf.summary.histogram('non_neg', non_neg_mask)
# cal loss
cross_entropy = tf.nn.weighted_cross_entropy_with_logits(
logits=logits, targets=labels, pos_weight=12, name='sigmod_cross_entropy')
tf.summary.histogram('sigmod_ce', cross_entropy)
cross_entropy_cost = tf.reduce_sum(tf.reduce_mean(cross_entropy * non_neg_mask, axis=0) * loss_coef)
# Create a tensor named cross_entropy for logging purposes.
tf.identity(cross_entropy_cost, name='cross_entropy')
tf.summary.scalar('cross_entropy', cross_entropy_cost)
# Add weight decay to the loss. We exclude the batch norm variables because
# doing so leads to a small improvement in accuracy.
loss = cross_entropy_cost + FLAGS.weight_decay * tf.add_n(
[tf.nn.l2_loss(v) for v in tf.trainable_variables() if 'batch_normalization' not in v.name])
if mode == tf.estimator.ModeKeys.TRAIN:
# Scale the learning rate linearly with the batch size. When the batch size
# is 256, the learning rate should be 0.1.
lr_warmup = FLAGS.lr_warmup
warmup_step = FLAGS.warmup
warmup_decay_step = FLAGS.lr_warmup_decay_step
warmup_decay_factor = FLAGS.lr_warmup_decay_factor
global_step = tf.train.get_or_create_global_step()
boundaries = [
int(FLAGS.lr_decay_step * epoch) for epoch in [1, 2, 3, 4]]
values = [
FLAGS.lr * decay for decay in [1, 0.1, 0.01, 1e-3, 1e-4]]
learning_rate = tf.train.piecewise_constant(
tf.cast(global_step, tf.int32), boundaries, values)
# Linear Scaling Rule and Gradual Warmup
lr = tf.cond(
global_step < warmup_step,
lambda: tf.train.exponential_decay(
lr_warmup,
global_step,
warmup_decay_step,
warmup_decay_factor,
staircase=True
),
lambda: learning_rate
)
# Create a tensor named learning_rate for logging purposes.
tf.identity(lr, name='learning_rate')
tf.summary.scalar('learning_rate', lr)
optimizer = tf.train.MomentumOptimizer(
learning_rate=lr,
momentum=FLAGS.opt_momentum)
# Batch norm requires update_ops to be added as a train_op dependency.
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
train_op = optimizer.minimize(loss, global_step)
else:
train_op = None
# Build evaluate metrics
accuracy = tf.metrics.accuracy(
tf.argmax(labels, axis=1), predictions['classes'])
metrics = {'accuracy': accuracy}
tf.identity(accuracy[1], name='train_accuracy')
tf.summary.scalar('train_accuracy', accuracy[1])
return tf.estimator.EstimatorSpec(
mode=mode,
predictions=predictions,
loss=loss,
train_op=train_op,
eval_metric_ops=metrics)
def main(_):
# Using the Winograd non-fused algorithms provides a small performance boost.
os.environ['TF_ENABLE_WINOGRAD_NONFUSED'] = '1'
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.gpu_options.visible_device_list = str(FLAGS.visiable_gpu)
model_path = FLAGS.model_dir
max_ckp_num = (FLAGS.max_to_keep)
run_config = tf.estimator.RunConfig(save_checkpoints_steps=FLAGS.snapshot,
keep_checkpoint_max=max_ckp_num,
session_config=config,
save_summary_steps=FLAGS.log_interval)
resnet_classifier = tf.estimator.Estimator(
model_fn=resnet_model_fn,
model_dir=model_path,
config=run_config,
params={
'resnet_size': FLAGS.resnet_size,
'data_format': FLAGS.data_format,
'batch_size': FLAGS.batch_size,
}
)
tensors_to_log = {
'learning_rate': 'learning_rate',
'cross_entropy': 'cross_entropy',
'train_accuracy': 'train_accuracy'
}
logging_hook = tf.train.LoggingTensorHook(
tensors=tensors_to_log, every_n_iter=FLAGS.log_interval, at_end=True)
print('Total run steps = {}'.format(FLAGS.max_iter))
hook_list = [logging_hook]
resnet_classifier.train(
input_fn=lambda: input_fn(True, FLAGS.data_dir, FLAGS.batch_size),
steps=FLAGS.max_iter,
hooks=hook_list
)
if __name__ == '__main__':
tf.logging.set_verbosity(tf.logging.INFO)
tf.app.run()