-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_data.py
322 lines (245 loc) · 11.2 KB
/
evaluate_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
import glob
import awkward as ak
import numpy as np
import json
from fcc_study.pNN.training.train import getRunLoc
from fcc_study.pNN.training.preprocessing_datasetClasses import getDataAwkward, consistentTrainTestSplit
from fcc_study.pNN.training.preprocessing_datasetClasses import normaliseWeights, scaleFeatures, CustomDataset, combineInChunks, applyScaler, applyInverseScaler
from fcc_study.pNN.training.train import trainNN
import copy, uproot, os
import matplotlib.pyplot as plt
import mplhep as hep
import torch.multiprocessing
torch.multiprocessing.set_sharing_strategy('file_system')
import importlib
from fcc_study.pNN.utils import convertToNumpy
import torch, pickle
from tqdm import tqdm
from torch.utils.data import DataLoader
import argparse
def parse_arguments():
parser = argparse.ArgumentParser(
description="Masses to evaulate and interpolate pNN at.")
parser.add_argument(
"--scenario",
required=True,
default=None,
type=str,
help="Which scenario to run.")
parser = parser.parse_args()
parser_kwargs = parser._get_kwargs()
for arg, val in parser_kwargs:
print(f"{arg} : {val}")
return parser
parser = parse_arguments()
scenario = parser.scenario
directory = f"/vols/cms/emc21/FCC/FCC-Study/runs/e365NewestData/scenario_{scenario}/run1"
run_loc = directory
def getTrainingInfo(train_direc):
with open(f"{train_direc}/samples.json", "r") as f:
samples = json.load(f)
with open(f"{train_direc}/branches.json", "r") as f:
pnn_branches_full = json.load(f)
with open(f"{train_direc}/params.json", "r") as f:
params = json.load(f)
scaler = pickle.load(open(f"{train_direc}/scaler.pkl", "rb"))
mass_scaler = pickle.load(open(f"{train_direc}/mass_scaler.pkl", "rb"))
return samples, pnn_branches_full, params, scaler, mass_scaler
def loadModel(params, train_direc):
# First import the model and instantiate it
model_module = importlib.import_module("fcc_study.pNN.training.model")
# Initiate specific model
model = getattr(
model_module,
params["model"],
)(params["model_params"])
print(model)
# Get gpu if available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"device = {device}")
print(f"device type = {type(device)}")
# Now load in the model state
model.load_state_dict(torch.load(f"{train_direc}/model.pt", map_location=device))
model.to(device)
return model, device
# Load in the training info
samples, branches, params, feat_scaler, mass_scaler = getTrainingInfo(directory)
# Load in the model
model, device = loadModel(params, directory)
class Evaluator():
def __init__(self, model, device):
self.model = model
self.device = device
def getProbs(self, data):
# Input the data, and get the probs out
print("Finding NN output probabilities")
probabilities = []
loader = DataLoader(
data,
batch_size=10000,
shuffle=False,
pin_memory=True,
num_workers=8,
)
self.model.eval()
for x, y, masses, w, wc in tqdm(loader):
# Transform the data
x = x.to(self.device)
y = y.to(self.device)
masses = masses.to(self.device)
w = w.to(self.device)
out = self.model(x, masses)
prob = torch.sigmoid(out)
probabilities.append(prob.detach().cpu().numpy())
# Now flatten
probabilities = np.concatenate(probabilities, axis=0)
return probabilities
def getProbsForEachMass(self, dataset, unique_masses):
# Find the probs for each sample, for each mass point
# Think this will be easier as a pandas df
probabilities = []
# Loop over all masses
for mass in unique_masses:
print(f"Finding probabilities for mass = {mass}")
# Set dataset mass info as the chosen mass
dataset.setAllMasses(mass)
# Now evaluate
probs = self.getProbs(dataset)
probabilities.append(probs)
# probabilities = np.concatenate(probabilities, axis=-1)
mass_scaler = dataset.mass_scaler # Want to convert to normal masses
unique_masses = mass_scaler.inverse_transform(unique_masses)
print(f"unique_masses = ")
print(unique_masses)
# Convert e.g. [80, 100, 120] to string "mH80_mA100_mHch120"
mass_strings = self.convertMassesToString(unique_masses)
for m, probs in zip(mass_strings, probabilities):
dataset.data[m] = ak.flatten(probs)
return dataset.data
def convertMassesToString(self, masses):
# This finds which BP it it is. This works by finding the nearest
# rather than the exact because sometimes the masses are not exactly
# the same after converting with the mass_scaler (before pNN) and
# then back
masses_strings = []
for mass in masses:
ms, md = int(np.rint(mass[0])), int(np.rint(mass[1]))
masses_strings.append(f"pnn_output_mH{ms}_mA{md}")
print(f"Masses {masses} converted to {masses_strings}")
return masses_strings
trainer = Evaluator(model, device)
######################### Evaluation #################################
def evaluateModelOnData(
data, branches, masses, feat_scaler, mass_scaler, trainer
):
# Add the weights to the test data
data['weight'] = copy.deepcopy(data['weight_nominal'])
# Now scale the features
data = applyScaler(data, feat_scaler, branches)
data = applyScaler(data, mass_scaler, ["mH", "mA"])
dataset = CustomDataset(data, branches, feat_scaler, mass_scaler)
#dataset.shuffleMasses()
data = trainer.getProbsForEachMass(dataset, masses)
return data
def saveSamples(evs, run_loc, scaler, features, run_name = "train"):
print(f"Saving samples for {run_name}")
# Find the unique processes, and loop over them
unique_procs = np.unique(evs['process'])
print(unique_procs)
for proc in unique_procs:
print(proc)
# Get the proc data then loop over specific proc and save
proc_data = evs[evs['process'] == proc]
scaled_data = applyInverseScaler(proc_data, scaler, features)
scaled_data = copy.deepcopy(scaled_data)
scaled_data = ak.values_astype(scaled_data, "float32")
# Save the data
for file_type in ['root', 'awkward']:
os.makedirs(f"{run_loc}/data/{run_name}/{file_type}", exist_ok=True)
ak.to_parquet(scaled_data, f"{run_loc}/data/{run_name}/awkward/{proc}.parquet")
df = ak.to_dataframe(scaled_data)
#df.to_csv(f"{run_loc}/data/{run_name}/awkward/{proc}.parquet")
with uproot.recreate(f"{run_loc}/data/{run_name}/root/{proc}.root") as file:
file["Events"] = df
print("Saved!")
def evaluateAllData(run_name, all_masses):
# files_sig = glob.glob(f"/vols/cms/emc21/FCC/FCC-Study/Data/stage2_all/awkward_files/{run_name}/*h2h2*.parquet")
# files_bkg = glob.glob(f"/vols/cms/emc21/FCC/FCC-Study/Data/stage2_all/awkward_files/{run_name}/*.parquet")
# files_bkg = [file for file in files_bkg if "h2h2" not in file]
# files = files_sig + files_bkg
files = glob.glob(f"/vols/cms/emc21/FCC/FCC-Study/Data/NewestDataComplete/ecom365/scenario{scenario}/awkward_files/{run_name}/*.parquet")
bkg_files = [file for file in files if "h2h2" not in file]
sig_files = [file for file in files if "h2h2" in file]
bkg_data = []
for file in bkg_files:
bkg_data.append(ak.from_parquet(file))
bkg_data = combineInChunks(bkg_data)
# Replace any nans with 0
for br in branches:
bkg_data[br] = ak.nan_to_num(bkg_data[br], 0)
print("all_masses: ", all_masses)
# Now do this in parts: for backgrounds can combine all then evaluate model
# Then save separately, but for signal I don't want to evaluate the signal
# on other signal point masses.
bkg_data = evaluateModelOnData(bkg_data, branches, all_masses, feat_scaler, mass_scaler, trainer)
saveSamples(bkg_data, run_loc, feat_scaler, branches, run_name = run_name)
# Get all the pnn_output branches
pnn_output_branches = [f for f in ak.fields(bkg_data) if "pnn_output" in f]
# Now delete bkg_data and load in the signal data
del bkg_data
# Need to pair all of the signal files that have the same mass point
# in the name
mass_points = []
for f in sig_files:
mass_point = f.split("/")[-1].split("_h2h2")[0]
if mass_point not in mass_points:
mass_points.append(mass_point)
# Now get all the files that have the same mass point
sig_file_dict = {}
for mass_point in mass_points:
sig_file_dict[mass_point] = [file for file in sig_files if mass_point in file]
# Now evaluate the signal data
for mass_point, mass_files in sig_file_dict.items():
file_name = f"{run_loc}/data/{run_name}/awkward/{mass_point}.parquet"
# Check if it exists, if it does then skip the evaluation
if os.path.isfile(file_name):
print(f"Skipping {mass_point} as already evaluated.")
continue
sig_train = []
for file in mass_files:
sig_train.append(ak.from_parquet(file))
sig_train = combineInChunks(sig_train)
# Replace any nans with 0
for br in branches:
sig_train[br] = ak.nan_to_num(sig_train[br], 0)
# Now I need to loop over all the signal points and evaluate the model on them
sig_procs = np.unique(list(sig_train.process))
for sig_proc in sig_procs:
print(f"Processing signal process: {sig_proc}")
sig_data = copy.deepcopy(sig_train[sig_train['process'] == sig_proc])
sig_data['weight'] = copy.deepcopy(sig_data['weight_nominal'])
sig_data = applyScaler(sig_data, feat_scaler, branches)
sig_data = applyScaler(sig_data, mass_scaler, ["mH", "mA"])
sig_dataset = CustomDataset(sig_data, branches, feat_scaler, mass_scaler)
masses = sig_dataset.unique_masses
sig_data = trainer.getProbsForEachMass(sig_dataset, masses)
# Now fill in the pnn_output branches
for pnn_output_branch in pnn_output_branches:
if pnn_output_branch not in ak.fields(sig_data):
sig_data[pnn_output_branch] = np.ones_like(sig_data['Zcand_m']) * -1
# Now save the data
saveSamples(sig_data, run_loc, feat_scaler, branches, run_name = run_name)
# First I need to load in all of the signal data to get all of the unique masses
val_files = glob.glob(f"/vols/cms/emc21/FCC/FCC-Study/Data/NewestDataComplete/ecom365/scenario{scenario}/awkward_files/val/*h2h2ll*.parquet")
val_data = []
for file in val_files:
val_data.append(ak.from_parquet(file))
val_data = combineInChunks(val_data)
masses = convertToNumpy(val_data, ['mH', 'mA'])
# Scale the masses
masses = mass_scaler.transform(masses)
unique_masses = copy.deepcopy(np.unique(masses, axis=0))
del val_data
evaluateAllData("test", unique_masses)
evaluateAllData("val", unique_masses)
evaluateAllData("train", unique_masses)