title | permalink | layout | comments | date |
---|---|---|---|---|
publications & patents |
/publications/ |
page |
false |
2024-12-20 |
You can check out the full list on google scholar. Below, I'll highlight my publications in aging, and patents in aging, and publications in physics, and my PhD thesis in physics as a bonus.
A.E. Tarkhov, T. Lindstrom-Vautrin, S. Zhang, K. Ying, M. Moqri, B. Zhang, A. Tyshkovskiy, O. Levy, V.N. Gladyshev.
Nature of epigenetic aging from a single-cell perspective.
Nature Aging 4, 854–870 (2024).
10.1038/s43587-024-00616-0
A.E. Tarkhov, K.A. Denisov, P.O. Fedichev.
Aging Clocks, Entropy, and the Challenge of Age Reversal.
Aging Biology 2, e20240031 (2024).
10.59368/agingbio.20240031
A universal transcriptomic signature of age reveals the temporal scaling of Caenorhabditis elegans aging trajectories.
A.E. Tarkhov, R. Alla, S. Ayyadevara, M. Pyatnitskiy, L.I. Menshikov, R.J. Shmookler Reis, P.O. Fedichev.
A universal transcriptomic signature of age reveals the temporal scaling of Caenorhabditis elegans aging trajectories.
Scientific Reports 9, 7368 (2019).
10.1038/s41598-019-43075-z
A.E. Tarkhov, L.I. Menshikov, P.O. Fedichev.
Strehler-Mildvan correlation is a degenerate manifold of Gompertz fit. Journal of Theoretical Biology 416, 180–189 (2017).
10.1016/j.jtbi.2017.01.017
Longitudinal analysis of blood markers reveals progressive loss of resilience and predicts ultimate limit of human lifespan.
T.V. Pyrkov, K. Avchaciov, A.E. Tarkhov, L.I. Menshikov, A.V. Gudkov, P.O. Fedichev.
Longitudinal analysis of blood markers reveals progressive loss of resilience and predicts ultimate limit of human lifespan.
Nature Communications 12, 2561 (2021).
10.1038/s41467-021-23014-1
<p>A.V. Shindyapina, A.A. Zenin, <strong>A.E. Tarkhov</strong>, D. Santesmasses, P.O. Fedichev, V.N. Gladyshev. Germline burden of rare damaging variants negatively affects human healthspan and lifespan. <br><i><b>eLife</b></i> 9, e53449 (2020). <br><a class="noarrow" href="https://doi.org/10.7554/eLife.53449" target="_blank">10.7554/eLife.53449</a></p>
</div>
K. Avchaciov, M.P. Antoch, E.L. Andrianova, A.E. Tarkhov, L.I. Menshikov, O. Burmistrova, A.V. Gudkov, P.O. Fedichev.
Unsupervised learning of aging principles from longitudinal data.
Nature Communications 13, 6529 (2022).
10.1038/s41467-022-34051-9
K. Ying, H. Liu, A.E. Tarkhov, M.C. Sadler, A.T. Lu, M. Moqri, S. Horvath, Z. Kutalik, X. Shen, V.N. Gladyshev. Causality-enriched epigenetic age uncouples damage and adaptation.
Nature Aging 4, 231–246 (2024).
10.1038/s43587-023-00557-0
M. Moqri, ..., A.E. Tarkhov, ..., V.N. Gladyshev, S. Horvath, M.P. Snyder, V. Sebastiano. PRC2-AgeIndex as a universal biomarker of aging and rejuvenation.
Nature Communications 15, 5956 (2024). 10.1038/s41467-024-50098-2
V.N. Gladyshev, ..., A.E. Tarkhov, ..., A. Zhavoronkov.
Disagreement on foundational principles of biological aging. PNAS Nexus 3, pgae499 (2024).
10.1093/pnasnexus/pgae499
Epigenetic profiling and incidence of disrupted development point to gastrulation as aging ground zero in Xenopus laevis.
B. Zhang, A.E. Tarkhov, ..., V.N. Gladyshev.
Epigenetic profiling and incidence of disrupted development point to gastrulation as aging ground zero in Xenopus laevis.
bioRxiv (2022).
10.1101/2022.08.02.502559
- Compounds, compositions and methods for treating age-related diseases and conditions (priority date February 10, 2021) WO2022173333A2, EP4291239A2
- Methods of biological age evaluation and systems using such methods (priority date January 16, 2020) WO2021145798A2, US20220351865A1
- Devices, methods, compositions and systems for the treatment of aging and age-related disorders (priority date July 17, 2018) WO2020018005A1, US20210260113A1
Transient ordering in the Gross-Pitaevskii lattice after an energy quench within a nonordered phase.
A.E. Tarkhov, A.V. Rozhkov, B.V. Fine. Transient ordering in the Gross-Pitaevskii lattice after an energy quench within a nonordered phase.
Phys Rev B 106, L201110 (2022).
10.1103/PhysRevB.106.L201110
A.E. Tarkhov, A.V. Rozhkov, B.V. Fine. Dynamics of topological defects after photoinduced melting of a charge density wave.
Phys Rev B 106, L121109 (2022).
10.1103/PhysRevB.106.L121109
Estimating ergodization time of a chaotic many-particle system from a time reversal of equilibrium noise.
A.E. Tarkhov, B.V. Fine. Estimating ergodization time of a chaotic many-particle system from a time reversal of equilibrium noise.
New J Phys 20, 123021 (2018).
10.1088/1367-2630/aaf0b6
A.E. Tarkhov, S. Wimberger, B.V. Fine. Extracting Lyapunov exponents from the echo dynamics of Bose-Einstein condensates on a lattice.
Phys Rev A 96, 023624 (2017).
10.1103/PhysRevA.96.023624
Universality of the Berezinskii–Kosterlitz–Thouless type of phase transition in the dipolar XY-model.
A.Y. Vasiliev, A.E. Tarkhov, L.I. Menshikov, P.O. Fedichev, U.R. Fischer. Universality of the Berezinskii–Kosterlitz–Thouless type of phase transition in the dipolar XY-model.
New J Phys 16, 053011 (2014).
10.1088/1367-2630/16/5/053011
V.I. Emel'yanov, A.E. Tarkhov.
Two-stage mechanism of formation of ordered surface nanostructures under atomic deposition.
Comput Nanotechnol 4, 37 (2015).
mathnet.ru/rus/cn51
P.E. Dolgirev, M.S. Kalenkov, A.E. Tarkhov, A.D. Zaikin. Phase-coherent electron transport in asymmetric crosslike Andreev interferometers.
Phys Rev B 100, 054511 (2019).
10.1103/PhysRevB.100.054511
A.E. Tarkhov.
Ergodization dynamics of the Gross-Pitaevskii equation on a lattice.
(Doctoral thesis, supervisor Boris V. Fine).
Skolkovo Institute of Science and Technology, Moscow, Russia (2020).