forked from orpatashnik/StyleCLIP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cog_predict.py
196 lines (159 loc) · 6.25 KB
/
cog_predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import copy
import os
import pickle
import sys
import tempfile
import time
from argparse import Namespace
from pathlib import Path
import clip
import cog
import dlib
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
import torch
import torchvision.transforms as transforms
from PIL import Image
sys.path.insert(0, "/content")
sys.path.insert(0, "/content/encoder4editing")
from encoder4editing.models.psp import pSp
from encoder4editing.utils.alignment import align_face
from encoder4editing.utils.common import tensor2im
os.chdir("global_directions")
sys.path.insert(0, ".")
from dnnlib import tflib
from manipulate import Manipulator
from MapTS import GetBoundary, GetDt, GetFs
class Predictor(cog.Predictor):
def setup(self):
print("starting setup")
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.model, self.preprocess = clip.load(
"ViT-B/32", device=self.device, jit=False
)
self.graph = tf.get_default_graph()
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.333)
self.sess = tf.Session(
graph=self.graph, config=tf.ConfigProto(gpu_options=gpu_options)
)
self.experiment_args = {"model_path": "e4e_ffhq_encode.pt"}
self.experiment_args["transform"] = transforms.Compose(
[
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
]
)
self.resize_dims = (256, 256)
model_path = self.experiment_args["model_path"]
ckpt = torch.load(model_path, map_location="cpu")
opts = ckpt["opts"]
# pprint.pprint(opts) # Display full options used
# update the training options
opts["checkpoint_path"] = model_path
opts = Namespace(**opts)
self.net = pSp(opts)
self.net.eval()
self.net.cuda()
self.shape_predictor = dlib.shape_predictor(
"/content/shape_predictor_68_face_landmarks.dat"
)
with self.graph.as_default(), self.sess.as_default():
#tflib.init_tf()
self.M = Manipulator(dataset_name="ffhq", sess=self.sess)
self.fs3 = np.load("npy/ffhq/fs3.npy")
np.set_printoptions(suppress=True)
print("setup complete")
@cog.input("input", type=Path, help="Input image")
@cog.input("neutral", type=str, help="Neutral image description")
@cog.input("target", type=str, help="Target image description")
@cog.input(
"manipulation_strength",
type=float,
min=-10,
max=10,
default=4.1,
help="The higher the manipulation strength, the closer the generated image becomes to the target description. Negative values moves the generated image further from the target description",
)
@cog.input(
"disentanglement_threshold",
type=float,
min=0.08,
max=0.3,
default=0.15,
help="The higher the disentanglement threshold, the more specific the changes are to the target attribute. Lower values mean that broader changes are made to the input image",
)
def predict(
self,
input,
neutral,
target,
manipulation_strength,
disentanglement_threshold,
):
# @title Align image
#original_image = Image.open(str(input))
#original_image = original_image.convert("RGB")
input_image = self.run_alignment(str(input))
#input_image = original_image
input_image = input_image.resize(self.resize_dims)
img_transforms = self.experiment_args["transform"]
transformed_image = img_transforms(input_image)
with torch.no_grad():
images, latents = self.run_on_batch(transformed_image.unsqueeze(0))
result_image, latent = images[0], latents[0]
print("latents", latents)
print(transformed_image.shape, result_image.shape)
w_plus = latents.cpu().detach().numpy()
with self.graph.as_default(), self.sess.as_default():
dlatents_loaded = self.M.W2S(w_plus)
#print("w_plus, dlatents_loaded", w_plus, dlatents_loaded)
img_index = 0
w_plus=latents.cpu().detach().numpy()
with self.graph.as_default(), self.sess.as_default():
dlatents_loaded=self.M.W2S(w_plus)
img_indexs=[img_index]
dlatent_tmp=[tmp[img_indexs] for tmp in dlatents_loaded]
with self.graph.as_default(), self.sess.as_default():
self.M.num_images = len(img_indexs)
self.M.alpha = [0]
self.M.manipulate_layers = [0]
with self.graph.as_default(), self.sess.as_default():
codes, out = self.M.EditOneC(0, dlatent_tmp)
original = Image.fromarray(out[0, 0]).resize((512, 512))
with self.graph.as_default(), self.sess.as_default():
self.M.manipulate_layers = None
classnames = [target, neutral]
dt = GetDt(classnames, self.model)
with self.graph.as_default(), self.sess.as_default():
self.M.alpha = [manipulation_strength]
boundary_tmp2, c = GetBoundary(
self.fs3, dt, self.M, threshold=disentanglement_threshold
)
codes = self.M.MSCode(dlatent_tmp, boundary_tmp2)
out = self.M.GenerateImg(codes)
generated = Image.fromarray(out[0, 0]) # .resize((512,512))
out_path = Path(tempfile.mkdtemp()) / "out.jpg"
generated.save(str(out_path))
return out_path
def run_alignment(self, image_path):
aligned_image = align_face(filepath=image_path, predictor=self.shape_predictor)
print("Aligned image has shape: {}".format(aligned_image.size))
return aligned_image
def run_on_batch(self, inputs):
images, latents = self.net(
inputs.to("cuda").float(), randomize_noise=False, return_latents=True
)
return images, latents
def concat_images(*images):
width = 0
for im in images:
width += im.width
height = max([im.height for im in images])
concat = Image.new("RGB", (width, height))
offset = 0
for im in images:
concat.paste(im, (offset, 0))
offset += im.width
return concat