forked from automl/neps
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmulti_fidelity.py
83 lines (66 loc) · 2.59 KB
/
multi_fidelity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import logging
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn, optim
import neps
class TheModelClass(nn.Module):
"""Taken from https://pytorch.org/tutorials/beginner/saving_loading_models.html"""
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
def get_model_and_optimizer(learning_rate):
"""Taken from https://pytorch.org/tutorials/beginner/saving_loading_models.html"""
model = TheModelClass()
optimizer = optim.SGD(model.parameters(), lr=learning_rate, momentum=0.9)
return model, optimizer
def run_pipeline(pipeline_directory, previous_pipeline_directory, learning_rate, epoch):
model, optimizer = get_model_and_optimizer(learning_rate)
checkpoint_name = "checkpoint.pth"
if previous_pipeline_directory is not None:
# Read in state of the model after the previous fidelity rung
checkpoint = torch.load(previous_pipeline_directory / checkpoint_name)
model.load_state_dict(checkpoint["model_state_dict"])
optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
epochs_previously_spent = checkpoint["epoch"]
else:
epochs_previously_spent = 0
# Train model here ...
# Save model to disk
torch.save(
{
"epoch": epoch,
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
},
pipeline_directory / checkpoint_name,
)
loss = np.log(learning_rate / epoch) # Replace with actual error
epochs_spent_in_this_call = epoch - epochs_previously_spent # Optional for stopping
return dict(loss=loss, cost=epochs_spent_in_this_call)
pipeline_space = dict(
learning_rate=neps.FloatParameter(lower=1e-4, upper=1e0, log=True),
epoch=neps.IntegerParameter(lower=1, upper=10, is_fidelity=True),
)
logging.basicConfig(level=logging.INFO)
neps.run(
run_pipeline=run_pipeline,
pipeline_space=pipeline_space,
root_directory="results/multi_fidelity_example",
# Optional: Do not start another evaluation after <=100 epochs, corresponds to cost
# field above.
max_cost_total=100,
)