-
Notifications
You must be signed in to change notification settings - Fork 3
/
rpLidar.cpp
492 lines (408 loc) · 15.3 KB
/
rpLidar.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
/*
* @author KKest
* @created 10.01.2022
*
* Library to control an rpLidar S2
*
*/
#include "rpLidar.h"
#include "Arduino.h"
static sl_u32 _varbitscale_decode(sl_u32 scaled, sl_u32 & scaleLevel)
{
static const sl_u32 VBS_SCALED_BASE[] = {
SL_LIDAR_VARBITSCALE_X16_DEST_VAL,
SL_LIDAR_VARBITSCALE_X8_DEST_VAL,
SL_LIDAR_VARBITSCALE_X4_DEST_VAL,
SL_LIDAR_VARBITSCALE_X2_DEST_VAL,
0,
};
static const sl_u32 VBS_SCALED_LVL[] = {
4,
3,
2,
1,
0,
};
static const sl_u32 VBS_TARGET_BASE[] = {
(0x1 << SL_LIDAR_VARBITSCALE_X16_SRC_BIT),
(0x1 << SL_LIDAR_VARBITSCALE_X8_SRC_BIT),
(0x1 << SL_LIDAR_VARBITSCALE_X4_SRC_BIT),
(0x1 << SL_LIDAR_VARBITSCALE_X2_SRC_BIT),
0,
};
for (size_t i = 0; i < 5; ++i) {
int remain = ((int)scaled - (int)VBS_SCALED_BASE[i]);
if (remain >= 0) {
scaleLevel = VBS_SCALED_LVL[i];
return VBS_TARGET_BASE[i] + (remain << scaleLevel);
}
}
return 0;
}
rpLidar::rpLidar(HardwareSerial *_mySerial,uint32_t baud,int rx,int tx)
{
scan_mutex = xSemaphoreCreateMutex();
serial=_mySerial;
serial->setRxBufferSize(256);
serial->begin(baud, SERIAL_8N1,rx,tx);
_cached_scan_node_hq_count = 0;
total_scan_count = 0;
}
stDeviceInfo_t rpLidar::getDeviceInfo()
{
clearSerialBuffer();
stDeviceInfo_t info;
rp_descriptor_t descr;
serial->write((uint8_t*)&req_message[rq_info],2); //send Device Info request
if(!checkForTimeout(10,27)) //wait for Response
{
serial->readBytes((uint8_t*)&descr,7);
serial->readBytes((uint8_t*)&info,20);
}
return info;
}
stDeviceStatus_t rpLidar::getDeviceHealth()
{
clearSerialBuffer(); //remove old data in SerialBuffer
rp_descriptor_t descr;
stDeviceStatus_t deviceStatus;
serial->write((uint8_t*)&req_message[rq_health],2); //send device health request
if(!checkForTimeout(400,10)) //wait for response
{
serial->readBytes((uint8_t*)&descr,7);
serial->readBytes((uint8_t*)&deviceStatus,3);
}
return deviceStatus;
}
void rpLidar::resetDevice()
{
serial->write((uint8_t*)&req_message[rq_reset],2); //send reset request
delay(800); //wait for reboot
clearSerialBuffer(); //remove old data in SerialBuffer
status=false;
}
void rpLidar::stopDevice()
{
serial->write((uint8_t*)&req_message[rq_stop],2);
}
bool rpLidar::start(uint8_t _mode)
{
resetDevice();
clearSerialBuffer();
Serial.write("strt");
serial->write((uint8_t*)&req_Express[denseVersion],9); //express scan request
rp_descriptor_t descr;
if(!checkForTimeout(100,7)) //wait for response
{
serial->readBytes((uint8_t*)&descr,7);
scanMode=_mode;
status=true;
Serial.print("1");
//ToDo - figure out correct response
return compareDescriptor(descr,resp_descriptor[ultradense]);
}
return false;
}
bool rpLidar::isRunning()
{
return status;
}
uint8_t rpLidar::isScanMode()
{
return scanMode;
}
//-----------------------------------------------------------------------------------------------------//
//-----------------------------------------------------------------------------------------------------//
// Debug Functions
//-----------------------------------------------------------------------------------------------------//
//-----------------------------------------------------------------------------------------------------//
void rpLidar::DebugPrintMeasurePoints(int16_t count)
{
for (int pos = 0; pos < (int)count; ++pos) {
scanDot dot;
if (!_cached_scan_node_hq_buf[pos].dist_mm_q2) continue;
//dot.quality = _cached_scan_node_hq_buf[pos].quality; //quality is broken for some reason
dot.angle = (((float)_cached_scan_node_hq_buf[pos].angle_z_q14) * 90.0 / 16384.0);
dot.dist = _cached_scan_node_hq_buf[pos].dist_mm_q2 /4.0f;
Serial.print(dot.angle);
Serial.print(":");
Serial.println(dot.dist);
//Serial.print(":");
//Serial.print(dot.quality);
}
}
void rpLidar::DebugPrintDeviceErrorStatus(stDeviceStatus_t _status)
{
Serial.println("\n--Device Health--");
Serial.print("Status:");
Serial.println(_status.status);
Serial.print("Error Low:");
Serial.print(_status.errorCode_low);
Serial.print("Error High:");
Serial.println(_status.errorCode_high);
Serial.println('\n');
}
void rpLidar::DebugPrintDeviceInfo(stDeviceInfo_t _info)
{
Serial.println("\n--Device Info--");
Serial.print("Model:");
Serial.println(_info.model);
Serial.print("Firmware:");
Serial.print(_info.firmware_major);
Serial.print(".");
Serial.println(_info.firmware_minor);
Serial.print("Hardware:");
Serial.println(_info.hardware);
Serial.print("Serial Number:");
for(uint16_t i=0;i<16;i++)
{
Serial.print(_info.serialnumber[i],HEX);
}
Serial.println('\n');
}
void rpLidar::DebugPrintDescriptor(rp_descriptor_t _descriptor)
{
Serial.print ("Descriptor : ");
for(uint8_t i=0;i<7;i++)
{
Serial.print(_descriptor[i],HEX);
Serial.print("|");
}
Serial.println();
}
//-----------------------------------------------------------------------------------------------------//
//-----------------------------------------------------------------------------------------------------//
// End Debug Functions
//-----------------------------------------------------------------------------------------------------//
//-----------------------------------------------------------------------------------------------------//
bool rpLidar::compareDescriptor(rp_descriptor_t _descr1,rp_descriptor_t _descr2)
{
for(size_t i=0;i<sizeof(rp_descriptor_t);i++)
{
if(_descr1[i]!=_descr2[i])
{
return false;
}
}
return true;
}
void rpLidar::clearSerialBuffer()
{
while(serial->available())//read as long the hardware buffer is not empty
{
serial->read();
}
}
bool rpLidar::checkForTimeout(uint32_t _time,size_t _size)
{
float startTime=millis();
while(!(serial->available()>=_size))
{
if(millis()>(startTime+_time)){
Serial.println("Lidar Timeout");
return true;
}
}
return false;
}
sl_result rpLidar::cacheUltraCapsuledScanData()
{
sl_lidar_response_ultra_capsule_measurement_nodes_t ultra_capsule_node;
sl_lidar_response_measurement_node_hq_t local_buf[256];
size_t count = 256;
sl_lidar_response_measurement_node_hq_t local_scan[MAX_SCAN_NODES];
size_t scan_count = 0;
sl_result ans = SL_RESULT_OK;
memset(local_scan, 0, sizeof(local_scan));
_waitUltraCapsuledNode(ultra_capsule_node);
while (_isScanning) {
ans = _waitUltraCapsuledNode(ultra_capsule_node);
if (ans !=0) {
if ((sl_result)ans != SL_RESULT_OPERATION_TIMEOUT && (sl_result)ans != SL_RESULT_INVALID_DATA) {
//_isScanning = false;
return (sl_result)ans ;
}
else {
// current data is invalid, do not use it.
continue;
}
}
_ultraCapsuleToNormal(ultra_capsule_node, local_buf, count);
for (size_t pos = 0; pos < count; ++pos) {
if (local_buf[pos].flag & SL_LIDAR_RESP_MEASUREMENT_SYNCBIT) {
// only publish the data when it contains a full 360 degree scan
if ((local_scan[0].flag & SL_LIDAR_RESP_MEASUREMENT_SYNCBIT)) {
//xSemaphoreTake(scan_mutex, 500);
//increment so external process know we have completed a scan
total_scan_count++;
memcpy(_cached_scan_node_hq_buf, local_scan, scan_count * sizeof(sl_lidar_response_measurement_node_hq_t));
_cached_scan_node_hq_count = scan_count;
//xSemaphoreGive(scan_mutex);
}
scan_count = 0;
}
local_scan[scan_count++] = local_buf[pos];
if (scan_count == MAX_SCAN_NODES) scan_count -= 1; // prevent overflow
//for interval retrieve
// {
// rp::hal::AutoLocker l(_lock);
// _cached_scan_node_hq_buf_for_interval_retrieve[_cached_scan_node_hq_count_for_interval_retrieve++] = local_buf[pos];
// if (_cached_scan_node_hq_count_for_interval_retrieve == _countof(_cached_scan_node_hq_buf_for_interval_retrieve)) _cached_scan_node_hq_count_for_interval_retrieve -= 1; // prevent overflow
//}
}
}
_isScanning = false;
return SL_RESULT_OK;
}
sl_result rpLidar::_waitUltraCapsuledNode(sl_lidar_response_ultra_capsule_measurement_nodes_t & node, sl_u32 timeout)
{
int recvPos = 0;
sl_u32 startTs = millis();
sl_u8 recvBuffer[sizeof(sl_lidar_response_ultra_capsule_measurement_nodes_t)];
sl_u8 *nodeBuffer = (sl_u8*)&node;
sl_u32 waitTime;
while ((waitTime = millis() - startTs) <= DEFAULT_TIMEOUT) {
size_t remainSize = sizeof(sl_lidar_response_ultra_capsule_measurement_nodes_t) - recvPos;
size_t recvSize;
recvSize = serial->available();
if(recvSize ==0) continue;
if (recvSize > remainSize) recvSize = remainSize;
recvSize = serial->read(recvBuffer, recvSize);
for (size_t pos = 0; pos < recvSize; ++pos) {
sl_u8 currentByte = recvBuffer[pos];
switch (recvPos) {
case 0: // expect the sync bit 1
{
sl_u8 tmp = (currentByte >> 4);
if (tmp == SL_LIDAR_RESP_MEASUREMENT_EXP_SYNC_1) {
// pass
}
else {
_is_previous_capsuledataRdy = false;
continue;
}
}
break;
case 1: // expect the sync bit 2
{
sl_u8 tmp = (currentByte >> 4);
if (tmp == SL_LIDAR_RESP_MEASUREMENT_EXP_SYNC_2) {
// pass
}
else {
recvPos = 0;
_is_previous_capsuledataRdy = false;
continue;
}
}
break;
}
nodeBuffer[recvPos++] = currentByte;
if (recvPos == sizeof(sl_lidar_response_ultra_capsule_measurement_nodes_t)) {
// calc the checksum ...
sl_u8 checksum = 0;
sl_u8 recvChecksum = ((node.s_checksum_1 & 0xF) | (node.s_checksum_2 << 4));
for (size_t cpos = offsetof(sl_lidar_response_ultra_capsule_measurement_nodes_t, start_angle_sync_q6);
cpos < sizeof(sl_lidar_response_ultra_capsule_measurement_nodes_t); ++cpos)
{
checksum ^= nodeBuffer[cpos];
}
if (recvChecksum == checksum) {
// only consider vaild if the checksum matches...
if (node.start_angle_sync_q6 & SL_LIDAR_RESP_MEASUREMENT_EXP_SYNCBIT) {
// this is the first capsule frame in logic, discard the previous cached data...
_is_previous_capsuledataRdy = false;
return SL_RESULT_OK;
}
return SL_RESULT_OK;
}
_is_previous_capsuledataRdy = false;
return SL_RESULT_INVALID_DATA;
}
}
}
_is_previous_capsuledataRdy = false;
return SL_RESULT_OPERATION_TIMEOUT;
}
void rpLidar::_ultraCapsuleToNormal(const sl_lidar_response_ultra_capsule_measurement_nodes_t & capsule, sl_lidar_response_measurement_node_hq_t *nodebuffer, size_t &nodeCount)
{
nodeCount = 0;
if (_is_previous_capsuledataRdy) {
int diffAngle_q8;
int currentStartAngle_q8 = ((capsule.start_angle_sync_q6 & 0x7FFF) << 2);
int prevStartAngle_q8 = ((_cached_previous_ultracapsuledata.start_angle_sync_q6 & 0x7FFF) << 2);
diffAngle_q8 = (currentStartAngle_q8)-(prevStartAngle_q8);
if (prevStartAngle_q8 > currentStartAngle_q8) {
diffAngle_q8 += (360 << 8);
}
int angleInc_q16 = (diffAngle_q8 << 3) / 3;
int currentAngle_raw_q16 = (prevStartAngle_q8 << 8);
for (size_t pos = 0; pos < 32/*_countof(_cached_previous_ultracapsuledata.ultra_cabins)*/; ++pos) {
int dist_q2[3];
int angle_q6[3];
int syncBit[3];
sl_u32 combined_x3 = _cached_previous_ultracapsuledata.ultra_cabins[pos].combined_x3;
// unpack ...
int dist_major = (combined_x3 & 0xFFF);
// signed partical integer, using the magic shift here
// DO NOT TOUCH
int dist_predict1 = (((int)(combined_x3 << 10)) >> 22);
int dist_predict2 = (((int)combined_x3) >> 22);
int dist_major2;
sl_u32 scalelvl1, scalelvl2;
// prefetch next ...
if (pos == 32/*_countof(_cached_previous_ultracapsuledata.ultra_cabins)*/ - 1) {
dist_major2 = (capsule.ultra_cabins[0].combined_x3 & 0xFFF);
}
else {
dist_major2 = (_cached_previous_ultracapsuledata.ultra_cabins[pos + 1].combined_x3 & 0xFFF);
}
// decode with the var bit scale ...
dist_major = _varbitscale_decode(dist_major, scalelvl1);
dist_major2 = _varbitscale_decode(dist_major2, scalelvl2);
int dist_base1 = dist_major;
int dist_base2 = dist_major2;
if ((!dist_major) && dist_major2) {
dist_base1 = dist_major2;
scalelvl1 = scalelvl2;
}
dist_q2[0] = (dist_major << 2);
if ((dist_predict1 == 0xFFFFFE00) || (dist_predict1 == 0x1FF)) {
dist_q2[1] = 0;
}
else {
dist_predict1 = (dist_predict1 << scalelvl1);
dist_q2[1] = (dist_predict1 + dist_base1) << 2;
}
if ((dist_predict2 == 0xFFFFFE00) || (dist_predict2 == 0x1FF)) {
dist_q2[2] = 0;
}
else {
dist_predict2 = (dist_predict2 << scalelvl2);
dist_q2[2] = (dist_predict2 + dist_base2) << 2;
}
for (int cpos = 0; cpos < 3; ++cpos) {
syncBit[cpos] = (((currentAngle_raw_q16 + angleInc_q16) % (360 << 16)) < angleInc_q16) ? 1 : 0;
int offsetAngleMean_q16 = (int)(7.5 * 3.1415926535 * (1 << 16) / 180.0);
if (dist_q2[cpos] >= (50 * 4))
{
const int k1 = 98361;
const int k2 = int(k1 / dist_q2[cpos]);
offsetAngleMean_q16 = (int)(8 * 3.1415926535 * (1 << 16) / 180) - (k2 << 6) - (k2 * k2 * k2) / 98304;
}
angle_q6[cpos] = ((currentAngle_raw_q16 - int(offsetAngleMean_q16 * 180 / 3.14159265)) >> 10);
currentAngle_raw_q16 += angleInc_q16;
if (angle_q6[cpos] < 0) angle_q6[cpos] += (360 << 6);
if (angle_q6[cpos] >= (360 << 6)) angle_q6[cpos] -= (360 << 6);
sl_lidar_response_measurement_node_hq_t node;
node.flag = (syncBit[cpos] | ((!syncBit[cpos]) << 1));
node.quality = dist_q2[cpos] ? (0x2F << SL_LIDAR_RESP_MEASUREMENT_QUALITY_SHIFT) : 0;
node.angle_z_q14 = sl_u16((angle_q6[cpos] << 8) / 90);
node.dist_mm_q2 = dist_q2[cpos];
nodebuffer[nodeCount++] = node;
}
}
}
_cached_previous_ultracapsuledata = capsule;
_is_previous_capsuledataRdy = true;
}