このフォルダには、SATの重みを使用した推論コードと、SAT重みのファインチューニングコードが含まれています。
CogVideoX1.0
バージョンのモデルに関心がある場合は、こちら
のSATフォルダを参照してください。このブランチはCogVideoX1.5
シリーズのモデルのみをサポートしています。
pip install -r requirements.txt
まず、SATミラーからモデルの重みをダウンロードしてください。
git lfs install
git clone https://huggingface.co/THUDM/CogVideoX1.5-5B-SAT
これにより、Transformers、VAE、T5 Encoderの3つのモデルがダウンロードされます。
CogVideoX-2B モデルについては、以下のようにダウンロードしてください:
mkdir CogVideoX-2b-sat
cd CogVideoX-2b-sat
wget https://cloud.tsinghua.edu.cn/f/fdba7608a49c463ba754/?dl=1
mv 'index.html?dl=1' vae.zip
unzip vae.zip
wget https://cloud.tsinghua.edu.cn/f/556a3e1329e74f1bac45/?dl=1
mv 'index.html?dl=1' transformer.zip
unzip transformer.zip
CogVideoX-5B モデルの transformers
ファイルをダウンロードしてください(VAEファイルは2Bと同じです):
モデルファイルを以下のように配置してください:
.
├── transformer
│ ├── 1000 (or 1)
│ │ └── mp_rank_00_model_states.pt
│ └── latest
└── vae
└── 3d-vae.pt
モデルの重みファイルが大きいため、git lfs
の使用をお勧めします。
git lfs
のインストール方法はこちらを参照してください。
git lfs install
次に、T5モデルをクローンします。このモデルはEncoderとしてのみ使用され、訓練やファインチューニングは必要ありません。
Modelscope上のモデルファイルも使用可能です。
git clone https://huggingface.co/THUDM/CogVideoX-2b.git # Huggingfaceからモデルをダウンロード
# git clone https://www.modelscope.cn/ZhipuAI/CogVideoX-2b.git # Modelscopeからダウンロード
mkdir t5-v1_1-xxl
mv CogVideoX-2b/text_encoder/* CogVideoX-2b/tokenizer/* t5-v1_1-xxl
これにより、Deepspeedファインチューニング中にエラーなくロードできるsafetensor形式のT5ファイルが作成されます。
├── added_tokens.json
├── config.json
├── model-00001-of-00002.safetensors
├── model-00002-of-00002.safetensors
├── model.safetensors.index.json
├── special_tokens_map.json
├── spiece.model
└── tokenizer_config.json
0 directories, 8 files
model:
scale_factor: 1.55258426
disable_first_stage_autocast: true
log_keys:
- txt
denoiser_config:
target: sgm.modules.diffusionmodules.denoiser.DiscreteDenoiser
params:
num_idx: 1000
quantize_c_noise: False
weighting_config:
target: sgm.modules.diffusionmodules.denoiser_weighting.EpsWeighting
scaling_config:
target: sgm.modules.diffusionmodules.denoiser_scaling.VideoScaling
discretization_config:
target: sgm.modules.diffusionmodules.discretizer.ZeroSNRDDPMDiscretization
params:
shift_scale: 3.0
network_config:
target: dit_video_concat.DiffusionTransformer
params:
time_embed_dim: 512
elementwise_affine: True
num_frames: 49
time_compressed_rate: 4
latent_width: 90
latent_height: 60
num_layers: 30
patch_size: 2
in_channels: 16
out_channels: 16
hidden_size: 1920
adm_in_channels: 256
num_attention_heads: 30
transformer_args:
checkpoint_activations: True ## using gradient checkpointing
vocab_size: 1
max_sequence_length: 64
layernorm_order: pre
skip_init: false
model_parallel_size: 1
is_decoder: false
modules:
pos_embed_config:
target: dit_video_concat.Basic3DPositionEmbeddingMixin
params:
text_length: 226
height_interpolation: 1.875
width_interpolation: 1.875
patch_embed_config:
target: dit_video_concat.ImagePatchEmbeddingMixin
params:
text_hidden_size: 4096
adaln_layer_config:
target: dit_video_concat.AdaLNMixin
params:
qk_ln: True
final_layer_config:
target: dit_video_concat.FinalLayerMixin
conditioner_config:
target: sgm.modules.GeneralConditioner
params:
emb_models:
- is_trainable: false
input_key: txt
ucg_rate: 0.1
target: sgm.modules.encoders.modules.FrozenT5Embedder
params:
model_dir: "t5-v1_1-xxl" # CogVideoX-2b/t5-v1_1-xxl 重みフォルダの絶対パス
max_length: 226
first_stage_config:
target: vae_modules.autoencoder.VideoAutoencoderInferenceWrapper
params:
cp_size: 1
ckpt_path: "CogVideoX-2b-sat/vae/3d-vae.pt" # CogVideoX-2b-sat/vae/3d-vae.ptファイルの絶対パス
ignore_keys: [ 'loss' ]
loss_config:
target: torch.nn.Identity
regularizer_config:
target: vae_modules.regularizers.DiagonalGaussianRegularizer
encoder_config:
target: vae_modules.cp_enc_dec.ContextParallelEncoder3D
params:
double_z: true
z_channels: 16
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult: [ 1, 2, 2, 4 ]
attn_resolutions: [ ]
num_res_blocks: 3
dropout: 0.0
gather_norm: True
decoder_config:
target: vae_modules.cp_enc_dec.ContextParallelDecoder3D
params:
double_z: True
z_channels: 16
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult: [ 1, 2, 2, 4 ]
attn_resolutions: [ ]
num_res_blocks: 3
dropout: 0.0
gather_norm: False
loss_fn_config:
target: sgm.modules.diffusionmodules.loss.VideoDiffusionLoss
params:
offset_noise_level: 0
sigma_sampler_config:
target: sgm.modules.diffusionmodules.sigma_sampling.DiscreteSampling
params:
uniform_sampling: True
num_idx: 1000
discretization_config:
target: sgm.modules.diffusionmodules.discretizer.ZeroSNRDDPMDiscretization
params:
shift_scale: 3.0
sampler_config:
target: sgm.modules.diffusionmodules.sampling.VPSDEDPMPP2MSampler
params:
num_steps: 50
verbose: True
discretization_config:
target: sgm.modules.diffusionmodules.discretizer.ZeroSNRDDPMDiscretization
params:
shift_scale: 3.0
guider_config:
target: sgm.modules.diffusionmodules.guiders.DynamicCFG
params:
scale: 6
exp: 5
num_steps: 50
args:
latent_channels: 16
mode: inference
load: "{absolute_path/to/your}/transformer" # CogVideoX-2b-sat/transformerフォルダの絶対パス
# load: "{your lora folder} such as zRzRzRzRzRzRzR/lora-disney-08-20-13-28" # This is for Full model without lora adapter
batch_size: 1
input_type: txt # "txt"でプレーンテキスト入力、"cli"でコマンドライン入力を選択可能
input_file: configs/test.txt # プレーンテキストファイル、編集可能
sampling_num_frames: 13 # CogVideoX1.5-5Bでは42または22、CogVideoX-5B / 2Bでは13, 11, または9
sampling_fps: 8
fp16: True # CogVideoX-2B用
# bf16: True # CogVideoX-5B用
output_dir: outputs/
force_inference: True
- 複数のプロンプトを含むテキストファイルを使用する場合、
configs/test.txt
を適宜編集してください。1行につき1プロンプトです。プロンプトの書き方が分からない場合は、こちらのコード を使用してLLMで補正できます。 - コマンドライン入力を使用する場合、以下のように変更します:
input_type: cli
これにより、コマンドラインからプロンプトを入力できます。
出力ビデオの保存場所を変更する場合は、以下を編集してください:
output_dir: outputs/
デフォルトでは.outputs/
フォルダに保存されます。
bash inference.sh
データセットは以下の構造である必要があります:
.
├── labels
│ ├── 1.txt
│ ├── 2.txt
│ ├── ...
└── videos
├── 1.mp4
├── 2.mp4
├── ...
各txtファイルは対応するビデオファイルと同じ名前で、ビデオのラベルを含んでいます。ビデオとラベルは一対一で対応させる必要があります。通常、1つのビデオに複数のラベルを使用することは避けてください。
スタイルのファインチューニングの場合、スタイルが似たビデオとラベルを少なくとも50本準備し、フィッティングを促進します。
`Lora`と全パラメータのファインチューニングの2種類をサポートしています。どちらも`transformer`部分のみをファインチューニングし、`VAE`部分は変更されず、`T5`はエンコーダーとしてのみ使用されます。
以下のようにしてconfigs/sft.yaml
(全量ファインチューニング)ファイルを編集してください:
# checkpoint_activations: True ## using gradient checkpointing (configファイル内の2つの`checkpoint_activations`を両方Trueに設定)
model_parallel_size: 1 # モデル並列サイズ
experiment_name: lora-disney # 実験名(変更不要)
mode: finetune # モード(変更不要)
load: "{your_CogVideoX-2b-sat_path}/transformer" ## Transformerモデルのパス
no_load_rng: True # 乱数シードをロードするかどうか
train_iters: 1000 # トレーニングイテレーション数
eval_iters: 1 # 検証イテレーション数
eval_interval: 100 # 検証間隔
eval_batch_size: 1 # 検証バッチサイズ
save: ckpts # モデル保存パス
save_interval: 100 # 保存間隔
log_interval: 20 # ログ出力間隔
train_data: [ "your train data path" ]
valid_data: [ "your val data path" ] # トレーニングセットと検証セットは同じでも構いません
split: 1,0,0 # トレーニングセット、検証セット、テストセットの割合
num_workers: 8 # データローダーのワーカー数
force_train: True # チェックポイントをロードする際に`missing keys`を許可(T5とVAEは別途ロード)
only_log_video_latents: True # VAEのデコードによるメモリ使用量を抑える
deepspeed:
bf16:
enabled: False # CogVideoX-2B 用は False、CogVideoX-5B 用は True に設定
fp16:
enabled: True # CogVideoX-2B 用は True、CogVideoX-5B 用は False に設定
args:
latent_channels: 16
mode: inference
load: "{absolute_path/to/your}/transformer" # Absolute path to CogVideoX-2b-sat/transformer folder
# load: "{your lora folder} such as zRzRzRzRzRzRzR/lora-disney-08-20-13-28" # This is for Full model without lora adapter
batch_size: 1
input_type: txt # You can choose "txt" for plain text input or change to "cli" for command-line input
input_file: configs/test.txt # Plain text file, can be edited
sampling_num_frames: 13 # For CogVideoX1.5-5B it must be 42 or 22. For CogVideoX-5B / 2B, it must be 13, 11, or 9.
sampling_fps: 8
fp16: True # For CogVideoX-2B
# bf16: True # For CogVideoX-5B
output_dir: outputs/
force_inference: True
- If using a text file to save multiple prompts, modify
configs/test.txt
as needed. One prompt per line. If you are unsure how to write prompts, use this code to call an LLM for refinement. - To use command-line input, modify:
input_type: cli
This allows you to enter prompts from the command line.
To modify the output video location, change:
output_dir: outputs/
The default location is the .outputs/
folder.
bash inference.sh
The dataset should be structured as follows:
.
├── labels
│ ├── 1.txt
│ ├── 2.txt
│ ├── ...
└── videos
├── 1.mp4
├── 2.mp4
├── ...
Each txt file should have the same name as the corresponding video file and contain the label for that video. The videos and labels should correspond one-to-one. Generally, avoid using one video with multiple labels.
For style fine-tuning, prepare at least 50 videos and labels with a similar style to facilitate fitting.
We support two fine-tuning methods: Lora
and full-parameter fine-tuning. Note that both methods only fine-tune the
transformer
part. The VAE
part is not modified, and T5
is only used as an encoder.
Modify the files in configs/sft.yaml
(full fine-tuning) as follows:
# checkpoint_activations: True ## using gradient checkpointing (both `checkpoint_activations` in the config file need to be set to True)
model_parallel_size: 1 # Model parallel size
experiment_name: lora-disney # Experiment name (do not change)
mode: finetune # Mode (do not change)
load: "{your_CogVideoX-2b-sat_path}/transformer" ## Path to Transformer model
no_load_rng: True # Whether to load random number seed
train_iters: 1000 # Training iterations
eval_iters: 1 # Evaluation iterations
eval_interval: 100 # Evaluation interval
eval_batch_size: 1 # Evaluation batch size
save: ckpts # Model save path
save_interval: 100 # Save interval
log_interval: 20 # Log output interval
train_data: [ "your train data path" ]
valid_data: [ "your val data path" ] # Training and validation sets can be the same
split: 1,0,0 # Proportion for training, validation, and test sets
num_workers: 8 # Number of data loader workers
force_train: True # Allow missing keys when loading checkpoint (T5 and VAE loaded separately)
only_log_video_latents: True # Avoid memory usage from VAE decoding
deepspeed:
bf16:
enabled: False # For CogVideoX-2B Turn to False and For CogVideoX-5B Turn to True
fp16:
enabled: True # For CogVideoX-2B Turn to True and For CogVideoX-5B Turn to False
``` To use Lora fine-tuning, you also need to modify cogvideox_<model parameters>_lora
file:
Here's an example using CogVideoX-2B
:
model:
scale_factor: 1.55258426
disable_first_stage_autocast: true
not_trainable_prefixes: [ 'all' ] ## Uncomment to unlock
log_keys:
- txt
lora_config: ## Uncomment to unlock
target: sat.model.finetune.lora2.LoraMixin
params:
r: 256
Edit finetune_single_gpu.sh
or finetune_multi_gpus.sh
and select the config file. Below are two examples:
- If you want to use the
CogVideoX-2B
model withLora
, modifyfinetune_single_gpu.sh
orfinetune_multi_gpus.sh
as follows:
run_cmd="torchrun --standalone --nproc_per_node=8 train_video.py --base configs/cogvideox_2b_lora.yaml configs/sft.yaml --seed $RANDOM"
- If you want to use the
CogVideoX-2B
model with full fine-tuning, modifyfinetune_single_gpu.sh
orfinetune_multi_gpus.sh
as follows:
run_cmd="torchrun --standalone --nproc_per_node=8 train_video.py --base configs/cogvideox_2b.yaml configs/sft.yaml --seed $RANDOM"
Run the inference code to start fine-tuning.
bash finetune_single_gpu.sh # Single GPU
bash finetune_multi_gpus.sh # Multi GPUs
The fine-tuned model cannot be merged. Here’s how to modify the inference configuration file inference.sh
run_cmd="$environs python sample_video.py --base configs/cogvideox_<model parameters>_lora.yaml configs/inference.yaml --seed 42"
Then, run the code:
bash inference.sh
The SAT weight format is different from Huggingface’s format and requires conversion. Run
python ../tools/convert_weight_sat2hf.py
Support is provided for exporting Lora weights from SAT to Huggingface Diffusers format. After training with the above steps, you’ll find the SAT model with Lora weights in {args.save}/1000/1000/mp_rank_00_model_states.pt
The export script export_sat_lora_weight.py
is located in the CogVideoX repository under tools/
. After exporting,
use load_cogvideox_lora.py
for inference.
Export command:
python tools/export_sat_lora_weight.py --sat_pt_path {args.save}/{experiment_name}-09-09-21-10/1000/mp_rank_00_model_states.pt --lora_save_directory {args.save}/export_hf_lora_weights_1/
The following model structures were modified during training. Here is the mapping between SAT and HF Lora structures. Lora adds a low-rank weight to the attention structure of the model.
'attention.query_key_value.matrix_A.0': 'attn1.to_q.lora_A.weight',
'attention.query_key_value.matrix_A.1': 'attn1.to_k.lora_A.weight',
'attention.query_key_value.matrix_A.2': 'attn1.to_v.lora_A.weight',
'attention.query_key_value.matrix_B.0': 'attn1.to_q.lora_B.weight',
'attention.query_key_value.matrix_B.1': 'attn1.to_k.lora_B.weight',
'attention.query_key_value.matrix_B.2': 'attn1.to_v.lora_B.weight',
'attention.dense.matrix_A.0': 'attn1.to_out.0.lora_A.weight',
'attention.dense.matrix_B.0': 'attn1.to_out.0.lora_B.weight'
Using export_sat_lora_weight.py
will convert these to the HF format Lora structure.