-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathload model and grad-CAM PTDBD all.py
211 lines (164 loc) · 6.52 KB
/
load model and grad-CAM PTDBD all.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
#!pip install numpy==1.16.2
import numpy as np
from scipy import signal
import matplotlib.pyplot as plt
import matplotlib.pylab as pl
import os
from keras.utils import to_categorical
from keras.models import Sequential
from keras.layers import Dense, Conv2D, Flatten, MaxPooling2D
from keras import backend as K
from keras.models import load_model
import keras
from keras.utils import plot_model
from sklearn.metrics import confusion_matrix
from vis.utils import utils as utils
from vis.visualization import visualize_saliency
import datetime
def sensitivity(y_true, y_pred):
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
return true_positives / (possible_positives + K.epsilon())
def specificity(y_true, y_pred):
true_negatives = K.sum(K.round(K.clip((1-y_true) * (1-y_pred), 0, 1)))
possible_negatives = K.sum(K.round(K.clip(1-y_true, 0, 1)))
return true_negatives / (possible_negatives + K.epsilon())
# def plot_map(grads):
# fig, axes = plt.subplots(1,2,figsize=(14,5))
# axes[0].imshow(_img)
# axes[1].imshow(_img)
# i = axes[1].imshow(grads,cmap="jet",alpha=0.8)
# fig.colorbar(i)
# plt.suptitle("Pr(class={}) = {:5.2f}".format(
# classlabel[class_idx],
# y_pred[0,class_idx]))
ecgs = np.load("morelowpass.npy",allow_pickle=True)
X_train = list()
Y_train = list()
X_val = list()
Y_val = list()
X_pred = list()
Y_pred = list()
#np.random.shuffle(ecgs)
nrtotrain = round(len(ecgs)*7/10)
for ecg in ecgs[0:nrtotrain:1]:
for beat in ecg[0]:
X_train.append(beat)
Y_train.append(ecg[1][0])
for ecg in ecgs[nrtotrain+1:round(len(ecgs)*9/10):1]:
for beat in ecg[0]:
X_val.append(beat)
Y_val.append(ecg[1][0])
for ecg in ecgs[round(len(ecgs)*9/10)+1:len(ecgs):1]:
for beat in ecg[0]:
X_pred.append(beat)
Y_pred.append(ecg[1][0])
X_train = np.asarray(X_train)
Y_train = np.asarray(Y_train)
X_val = np.asarray(X_val)
Y_val = np.asarray(Y_val)
X_pred = np.asarray(X_pred)
Y_pred = np.asarray(Y_pred)
X_train = X_train.reshape(len(X_train),600,12,1)
X_val = X_val.reshape(len(X_val),600,12,1)
X_pred = X_pred.reshape(len(X_pred),600,12,1)
Y_train = to_categorical(Y_train)
Y_val = to_categorical(Y_val)
#Y_pred = to_categorical(Y_pred)
model = load_model('09:33:16-Mar052020.h5')
print("Loaded model from disk")
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
model.layers[-1].activation = keras.activations.linear
model = utils.apply_modifications(model)
from vis.visualization import visualize_cam
penultimate_layer_idx = utils.find_layer_idx(model, "conv2d_3")
class_idx = [0,1]
pred = list()
grad = list()
Y_pred = Y_pred.astype(int)
#xx_pred = X_pred.astype(int)
a = model.predict_classes(X_pred).astype(int)
for idx,ecg in enumerate(X_pred):
if((Y_pred[idx] + a[idx]) ==0):
seed_input = ecg
#seed_input = X_pred[0]
grad_top1 = visualize_cam(model, -1, class_idx, seed_input,
penultimate_layer_idx = penultimate_layer_idx,#None,
backprop_modifier = None,
grad_modifier = None)
pred.append(ecg)
grad.append(grad_top1)
print(idx)
pred = np.asarray(pred)
grad = np.asarray(grad)
#cm1 = confusion_matrix(a, Y_pred)
#sensitivity1 = cm1[0,0]/(cm1[0,0]+cm1[0,1])
#print('Sensitivity : ', sensitivity1 )
#specificity1 = cm1[1,1]/(cm1[1,0]+cm1[1,1])
#print('Specificity : ', specificity1)
#pred = np.mean(pred,0)
grad = np.mean(grad,0)
#case = 15
cmap = pl.cm.jet
my_cmap = cmap(np.arange(cmap.N))
my_cmap[0:64,3] = 0 #np.linspace(0, 1, 64)
from matplotlib.colors import ListedColormap
# Create new colormap
my_cmap = ListedColormap(my_cmap)
#Lead legends
lead_names = np.asarray(['i', 'ii', 'iii', 'aVr', 'aVl', 'aVf', 'v1', 'v2', 'v3', 'v4', 'v5', 'v6'])
fig, ax_list = plt.subplots(6, 2,sharex='all')
#ax_list = ax_list.flatten()
pred=np.squeeze(pred)
grad = np.transpose(grad)
#for idx,lead in enumerate(pred): #[0:12:1] because we dont want VCG
#ax_list[idx].plot(np.transpose(lead),linewidth=2,color='black')
#ax_list[idx].imshow(grad[idx,np.newaxis,:], cmap='jet', aspect="auto",alpha=0.7,extent=[0,600,-2.5,2.5])
#ax_list[idx].set_ylabel(lead_names[idx])
for ecg in pred:
for idx,ax in enumerate(ax_list.T.flatten()):
#ax.plot(ecg[0][:,:,idx].T,linewidth=0.1,alpha=0.1,color='black')
ax.plot(ecg[:,idx],linewidth=0.1,color='black')
for idx,ax in enumerate(ax_list.T.flatten()):
ax.imshow(grad[idx,np.newaxis,:], cmap='jet', aspect="auto",alpha=0.7,extent=[0,600,-2.5,2.5])
ax.set_ylabel(lead_names[idx])
#grad = grad[0]
#ax_list[idx].plot(grad[idx],linewidth=0.5,color='black')
#plt.suptitle("(casenr {} predicted class {} class {})".format(case,a[case],Y_pred[case]))
#plt.subplots_adjust(left=0.10,right=0.90,bottom=0.10,top=0.90)
plt.tight_layout()
plt.show()
#plt.savefig()
#print(tn,fp,fn,tp)
#print(sensitivity(a,Y_pred))
#print(specificity(a,Y_pred))
# Plot training & validation accuracy values
#plt.plot(history.history['sensitivity'],color='k')
#plt.plot(history.history['specificity'],color='r')
#plt.plot(history.history['val_sensitivity'],color='k')
#plt.plot(history.history['val_specificity'],color='r')
#plt.title('Model accuracy')
#plt.ylabel('sens/spec')
#plt.xlabel('Epoch')
#plt.legend(['train_sensitivity','train_specificity','val_sensitivity','val_specificity'], loc='upper left')
#plt.show()
#plt.imshow(np.squeeze(X_train[0]))
# fig, ax_list = plt.subplots(6, 2,sharex='all')
# ax_list = ax_list.flatten()
# for ecg in ecgs:
# pass
# for idx,lead in enumerate(np.mean(ecg[0].T,2)): #[0:12:1] because we dont want VCG
# #print(idx)
# ax_list[idx].plot(lead,linewidth=0.1)
# #ax_list[idx].axvline(200, linewidth=0.8, color='r')
# #ax_list[idx].set_ylabel(lead_names[idx])
# #ax_list[idx].set_autoscaley_on(False)
# #ax_list[idx].set_autoscalex_on(True)
# #ax_list[idx].set_ylim([-2, 2])
# #ax_list[idx].grid(True,'both','both')
# # ax_list[idx].yaxis.set_major_locator(MultipleLocator(1))
# # ax_list[idx].yaxis.set_minor_locator(MultipleLocator(0.2))
# # ax_list[idx].xaxis.set_major_locator(MultipleLocator(200))
# # ax_list[idx].xaxis.set_minor_locator(MultipleLocator(40))
# plt.subplots_adjust(left=0.10,right=0.90,bottom=0.10,top=0.90)
# plt.show()