-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathXMLpreprocessing all beats.py
140 lines (115 loc) · 4.31 KB
/
XMLpreprocessing all beats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
from ECGXMLReader import ECGXMLReader as XMLread
import matplotlib.pyplot as plt
import numpy as np
from scipy import signal
import os
def butter_highpass(cutoff, fs, order=5):
nyq = 0.5 * fs
normal_cutoff = cutoff / nyq
b, a = signal.butter(order, normal_cutoff, btype='high', analog=False)
return b, a
def butter_lowpass(cutoff, fs, order=5):
nyq = 0.5 * fs
normal_cutoff = cutoff / nyq
b, a = signal.butter(order, normal_cutoff, btype='low', analog=False)
return b, a
def butter_highpass_filter(data, cutoff, fs, order=5):
b, a = butter_highpass(cutoff, fs, order=order)
y = signal.filtfilt(b, a, data)
return y
def butter_lowpass_filter(data, cutoff, fs, order=5):
b, a = butter_lowpass(cutoff, fs, order=order)
y = signal.filtfilt(b, a, data)
return y
#Returns the peaks and the leads
def getPeaksnEcg(inp):
ecg = XMLread(inp)
leads = ecg.getAllVoltages()
#fig, ax_list = plt.subplots(4, 2,sharex='all')
#ax_list = ax_list.flatten()
b = list()
idx=0
for k,v in leads.items():
#sig = butter_highpass_filter(v, 10, 1500, 5)/100
if v.shape == (600,):
v = signal.resample(v, 300)
sig = butter_lowpass_filter(butter_highpass_filter(np.asarray(v,dtype=float), 20, 1500, 5), 50, 1000, 5)/100
a = np.asarray(sig)
b.append(a/2)
#sig = butter_lowpass_filter(np.asarray(v), 5, 1000, 5)
#ax_list[idx].plot(sig,linewidth=0.5)
#ax_list[idx].set_ylabel(k)
idx=idx+1
a = np.asarray(b).T
c = np.convolve(np.square(np.gradient(a[:,1],1)),np.ones(50))
refractory_period = 100 # to have a QRS after less than 200 ms is physiologically impossible
threshold = max(c)/2 #Threshold should be one 1/3 of the maximum peak in registration
# Pan-Tompkins continues
peaks = list()
for idx, val in enumerate(c):
# Unpythonic ik
refractory_period+=1
if idx - 1 > 0 and idx + 1 < len(c) and c[idx - 1] < val and refractory_period>100 and c[idx + 1] < val and val > threshold :
#plt.axvline(x=idx,linewidth=1,color = 'k')
refractory_period = 0
peaks.append(idx)
peaks = np.asarray(peaks)
return peaks,a
#Returns an array of beats per lead
def getIndividualBeats(inp):
peaks, ecgs = getPeaksnEcg(inp)
ecg = list()
for lead in ecgs:
beats = list()
for idx, val in enumerate(peaks):
if idx > 0 and idx < len(peaks) - 1:
slice = lead[int(val - 50):int(val + 100):1]
beats.append(slice)
ecg.append(beats)
ecg = np.asarray(ecg)
#Supposed to return individual beats organized per lead
return ecg
#MAIN
LVH = list()
ecgs = list()
fig, ax_list = plt.subplots(4, 2,sharex='all')
ax_list = ax_list.flatten()
for root, dirs, files in os.walk("LEECH"):
for ind,f in enumerate(files):
test = getIndividualBeats(os.path.join(root, f))
short = f.rstrip('_.xml')
#print(short)
#print(short[-1:])
#LVH.append(short[-1:])
# making two lists one with LVH 1 or 0 and one with the complete ecg
LVH.append(int(short[-1:]))
ecgs.append(test)
#print(idx)
del ecgs[36] #Something is wrong with ecgs[36]
# for root, dirs, files in os.walk("LEECH"):
# for ind,f in enumerate(files):
# xml = XMLread(os.path.join(root, f))
# ecgs = xml.getAllMedianVoltages()
# count=0
# print(ecgs['I'].shape)
# for name,ecg in ecgs.items():
# if ecg.shape == (600,):
# sig = signal.resample(ecg, 300)
# else:
# sig = ecg
# ax_list[count].plot(np.asarray(sig),linewidth=0.5)
# count=count+1
beats = list()
for idx,ecg in enumerate(ecgs):
for idx2,beat in enumerate(ecg):
beats.append((beat.T,idx2,LVH[idx]))
ax_list[idx2].plot(np.asarray(beat.T),linewidth=0.1)
#print(beat.shape)
#ps,ecg = getPeaks('033_LEECH_24_0_.xml')
#print(shape(ecgs))
beats = np.asarray(beats)
#np.save('LVH.npy',beats,allow_pickle=True)
plt.subplots_adjust(left=0.10,right=0.90,bottom=0.10,top=0.90)
plt.show()
pass
pass