-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathXMLpreprocessing all beats copy.py
144 lines (121 loc) · 4.55 KB
/
XMLpreprocessing all beats copy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
from ECGXMLReader import ECGXMLReader as XMLread
import matplotlib.pyplot as plt
import numpy as np
from scipy import signal
import os
import readchar
def butter_highpass(cutoff, fs, order=5):
nyq = 0.5 * fs
normal_cutoff = cutoff / nyq
b, a = signal.butter(order, normal_cutoff, btype='high', analog=False)
return b, a
def butter_lowpass(cutoff, fs, order=5):
nyq = 0.5 * fs
normal_cutoff = cutoff / nyq
b, a = signal.butter(order, normal_cutoff, btype='low', analog=False)
return b, a
def butter_highpass_filter(data, cutoff, fs, order=5):
b, a = butter_highpass(cutoff, fs, order=order)
y = signal.filtfilt(b, a, data)
return y
def butter_lowpass_filter(data, cutoff, fs, order=5):
b, a = butter_lowpass(cutoff, fs, order=order)
y = signal.filtfilt(b, a, data)
return y
#Returns the peaks and the leads
def getPeaksnEcg(inp):
ecg = XMLread(inp)
leads = ecg.getAllVoltages()
#fig, ax_list = plt.subplots(4, 2,sharex='all')
#ax_list = ax_list.flatten()
b = list()
idx=0
for k,v in leads.items():
#sig = butter_highpass_filter(v, 10, 1500, 5)/100
if v.shape == (600,):
v = signal.resample(v, 300)
sig = butter_lowpass_filter(butter_highpass_filter(np.asarray(v,dtype=float), 20, 1500, 5), 50, 1000, 5)/100
a = np.asarray(sig)
b.append(a/2)
#sig = butter_lowpass_filter(np.asarray(v), 5, 1000, 5)
#ax_list[idx].plot(sig,linewidth=0.5)
#ax_list[idx].set_ylabel(k)
idx=idx+1
a = np.asarray(b).T
d = a[:,1]
c = np.convolve(np.square(np.gradient(d,1)),np.ones(6))
refractory_period = 100 # to have a QRS after less than 200 ms is physiologically impossible
threshold = max(c)/2 #Threshold should be one 1/3 of the maximum peak in registration
# Pan-Tompkins continues
peaks = list()
for idx, val in enumerate(c):
# Unpythonic ik
refractory_period+=1
if idx - 1 > 0 and idx + 1 < len(c) and c[idx - 1] < val and refractory_period>100 and c[idx + 1] < val and val > threshold :
#plt.axvline(x=idx,linewidth=1,color = 'k')
refractory_period = 0
peaks.append(idx)
peaks = np.asarray(peaks)
return peaks,a
#Returns an array of beats per lead
def getIndividualBeats(inp):
peaks, ecgs = getPeaksnEcg(inp)
ecg = list()
for idx2,lead in enumerate(ecgs.T):
beats = list()
for idx, val in enumerate(peaks):
if idx > 0 and idx < len(peaks) - 1:
slice = lead[int(val - 50):int(val + 100):1]
beats.append(slice)
#ax_list[idx2].plot(slice,linewidth=0.25)
ecg.append(beats)
ecg = np.asarray(ecg)
#The data is dirty, pan-tomkins is bad. Exclude beats with high MSE
median = np.median(ecg,1) #Make the median
for idx,lead in enumerate(median):
ax_list[idx].plot(lead.T,linewidth=0.8)
#List for the beats we keep
ecg_clean = list()
#Loop over all the 8 lead beats and compare with median
for idx, beat in enumerate(ecg):
#mse = np.mean(median - beat)
mse=0
for idx2, lead in enumerate(beat):
if len(beat)>8:
break
A = median[idx2]
B = lead
mse = np.mean((median - lead)**2)
if mse > 0.1:
print(idx + idx2,' is ',mse)
break
if mse < 0.2:
ecg_clean.append(beat)
#ax_list[0].plot(mean[0].T,linewidth=0.25)
#Supposed to return individual beats organized per lead
return np.array(ecg_clean)
#MAIN
LVH = list()
ecgs = list()
for root, dirs, files in os.walk("LEECH"):
for ind,f in enumerate(files):
fig, ax_list = plt.subplots(4, 2,sharex='all')
ax_list = ax_list.flatten()
test = getIndividualBeats(os.path.join(root, f))
short = f.rstrip('_.xml')
#print(short)
#print(short[-1:])
#LVH.append(short[-1:])
# making two lists one with LVH 1 or 0 and one with the complete ecg
LVH.append(int(short[-1:]))
ecgs.append(test)
for idx,beat in enumerate(test):
ax_list[idx].plot(beat.T,linewidth=0.2)
#key = readchar.readkey()
#plt.waitforbuttonpress()
#print(idx)
plt.text(0,0,f)
plt.show()
#plt.subplots_adjust(left=0.10,right=0.90,bottom=0.10,top=0.90)
pass
pass