-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlayers.py
62 lines (59 loc) · 2.92 KB
/
layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import math
import numpy as np
import torch
from torch.nn.parameter import Parameter
from torch.nn.modules.module import Module
class GraphConvolution(Module):
def __init__(self, in_features_v, out_features_v, in_features_e, out_features_e, bias=True, node_layer=True):
super(GraphConvolution, self).__init__()
self.in_features_v = in_features_v
self.out_features_v = out_features_v
self.in_features_e = in_features_e
self.out_features_e = out_features_e
if node_layer:
self.node_layer = True
self.weight = Parameter(torch.DoubleTensor(in_features_v, out_features_v))
self.p = Parameter(torch.from_numpy(np.random.normal(size=(1, in_features_e))).double())
if bias:
self.bias = Parameter(torch.DoubleTensor(out_features_v))
else:
self.register_parameter("bias", None)
else:
self.node_layer = False
self.weight = Parameter(torch.DoubleTensor(in_features_e, out_features_e))
self.p = Parameter(torch.from_numpy(np.random.normal(size=(1, in_features_v))).double())
if bias:
self.bias = Parameter(torch.DoubleTensor(out_features_e))
else:
self.register_parameter("bias", None)
self.reset_parameters()
def reset_parameters(self):
stdv = 1. / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def forward(self, H_v, H_e, adj_e, adj_v, T):
if self.node_layer:
ret = []
for he, hv, av, t in zip(H_e, H_v, adj_v, T):
multiplier1 = torch.mm(torch.from_numpy(t.todense()), torch.diag((he @ self.p.t()).t()[0])) @ torch.from_numpy(t.todense()).t()
mask1 = torch.eye(multiplier1.shape[0])
M1 = mask1 * torch.ones(multiplier1.shape[0]) + (1. - mask1)*multiplier1
adjusted_A = torch.mul(M1, torch.from_numpy(av.todense()))
output = torch.mm(adjusted_A, torch.mm(hv, self.weight))
if self.bias is not None:
retu = output + self.bias
ret.append(retu)
return ret, H_e
else:
ret = []
for he, hv, ae, t in zip(H_e, H_v, adj_e, T):
multiplier2 = torch.mm(torch.from_numpy(t.todense()).t(), torch.diag((hv @ self.p.t()).t()[0])) @ torch.from_numpy(t.todense())
mask2 = torch.eye(multiplier2.shape[0])
M3 = mask2 * torch.ones(multiplier2.shape[0]) + (1. - mask2)*multiplier2
adjusted_A = torch.mul(M3, torch.from_numpy(ae.todense()))
output = torch.mm(adjusted_A, torch.mm(he, self.weight))
if self.bias is not None:
retu = output + self.bias
ret.append(retu)
return H_v, ret