-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathgeoguessr_dataset.py
37 lines (29 loc) · 1.13 KB
/
geoguessr_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import torch
from torch.utils.data import Dataset
import torchvision.transforms as transforms
import numpy as np
import os, os.path
from PIL import Image
class GeoGuessrDataset(Dataset):
def __init__(self, data_dir):
self.data_dir = data_dir
self.targets = np.load(os.path.join(data_dir, 'targets.npy'), allow_pickle=True)
def __len__(self):
return len(os.listdir(self.data_dir)) - 1
def __getitem__(self, idx):
data_path = os.path.join(self.data_dir, f'street_view_{idx}.jpg')
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
transform = transforms.Compose([
transforms.Resize(256),
transforms.ToTensor(),
normalize,
])
img = pil_loader(data_path)
data = transform(img)
target = torch.tensor(self.targets[idx], dtype=torch.float)
return data, target
def pil_loader(path: str) -> Image.Image:
with open(path, "rb") as f:
img = Image.open(f)
return img.convert("RGB")