-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathoptimize_pregrasp.py
215 lines (200 loc) · 12.2 KB
/
optimize_pregrasp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import open3d as o3d
import numpy as np
import matplotlib.pyplot as plt
from gpis.gpis import GPIS
import torch
from utils import robot_configs
from utils.pb_grasp_visualizer import GraspVisualizer
from utils.create_arrow import create_direct_arrow
from spring_grasp_planner.optimizers import FCGPISGraspOptimizer, SpringGraspOptimizer
from spring_grasp_planner.initial_guesses import WRIST_OFFSET
device = torch.device("cpu")
def vis_grasp(tip_pose, target_pose):
tip_pose = tip_pose.cpu().detach().numpy().squeeze()
target_pose = target_pose.cpu().detach().numpy().squeeze()
tips = []
targets = []
arrows = []
color_code = np.array([[1,0,0],[0,1,0],[0,0,1],[1,1,0]])
for i in range(4):
tip = o3d.geometry.TriangleMesh.create_sphere(radius=0.005)
tip.paint_uniform_color(color_code[i])
tip.translate(tip_pose[i])
target = o3d.geometry.TriangleMesh.create_sphere(radius=0.0025)
target.paint_uniform_color(color_code[i] * 0.4)
target.translate(target_pose[i])
# create arrow point from tip to target
arrow = create_direct_arrow(tip_pose[i], target_pose[i])
arrow.paint_uniform_color(color_code[i])
tips.append(tip)
targets.append(target)
arrows.append(arrow)
return tips, targets, arrows
optimizers = {"sp": SpringGraspOptimizer,
"fc": FCGPISGraspOptimizer}
if __name__ == "__main__":
from argparse import ArgumentParser
import json
parser = ArgumentParser()
parser.add_argument("--num_iters", type=int, default=200)
parser.add_argument("--exp_name", type=str, required=True)
parser.add_argument("--pcd_file", type=str, default=None)
parser.add_argument("--mode", type=str, default="sp") # fc
parser.add_argument("--hand", type=str, default="allegro")
parser.add_argument("--mass", type=float, default=0.5) # Not use in the paper, may run into numerical issues.
parser.add_argument("--friction", type=float, default=1.0)
parser.add_argument("--vis_gpis", action="store_true", default=False)
parser.add_argument("--fast_exp", action="store_true", default=False)
parser.add_argument("--weight_config", type=str, default=None)
args = parser.parse_args()
if args.weight_config is not None:
weight_config = json.load(open(f"weight_config/{args.weight_config}.json"))
else:
weight_config = None
if args.pcd_file is not None:
pcd = o3d.io.read_point_cloud(args.pcd_file)
else:
pcd = o3d.io.read_point_cloud("data/obj_cropped.ply")
#center = pcd.get_oriented_bounding_box().get_center()
center = pcd.get_axis_aligned_bounding_box().get_center()
WRIST_OFFSET[:,0] += center[0]
WRIST_OFFSET[:,1] += center[1]
WRIST_OFFSET[:,2] += 2 * center[2]
# GPIS formulation
bound = max(max(pcd.get_axis_aligned_bounding_box().get_extent()) / 2 + 0.01, 0.1) # minimum bound is 0.1
gpis = GPIS(0.08, 1)
pcd_simple = pcd.farthest_point_down_sample(200)
points = np.asarray(pcd_simple.points)
points = torch.tensor(points).to(device).double()
data_noise = [0.005] * len(points)
weights = torch.rand(50,len(points)).to(device).double()
weights = torch.softmax(weights * 100, dim=1)
internal_points = weights @ points
externel_points = torch.tensor([[-bound, -bound, -bound],
[bound, -bound, -bound],
[-bound, bound, -bound],
[bound, bound, -bound],
[-bound, -bound, bound],
[bound, -bound, bound],
[-bound, bound, bound],
[bound, bound, bound],
[-bound,0., 0.],
[0., -bound, 0.],
[bound, 0., 0.],
[0., bound, 0],
[0., 0., bound],
[0., 0., -bound]]).double().to(device)
externel_points += torch.from_numpy(center).to(device).double()
y = torch.vstack([bound * torch.ones_like(externel_points[:,0]).to(device).view(-1,1),
torch.zeros_like(points[:,0]).to(device).view(-1,1),
-bound * 0.3 * torch.ones_like(internal_points[:,0]).to(device).view(-1,1)])
gpis.fit(torch.vstack([externel_points, points, internal_points]), y,
noise = torch.tensor([0.2] * len(externel_points)+
data_noise +
[0.05] * len(internal_points)).double().to(device))
if args.vis_gpis:
test_mean, test_var, test_normal, lb, ub = gpis.get_visualization_data([-bound+center[0],-bound+center[1],-bound+center[2]],
[bound+center[0],bound+center[1],bound+center[2]],steps=100)
plt.imshow(test_mean[:,:,50], cmap="seismic", vmax=bound, vmin=-bound)
plt.show()
vis_points, vis_normals, vis_var = gpis.topcd(test_mean, test_normal, [-bound+center[0],-bound+center[1],-bound+center[2]],[bound+center[0],bound+center[1],bound+center[2]],test_var=test_var,steps=100)
vis_var = vis_var / vis_var.max()
fitted_pcd = o3d.geometry.PointCloud()
fitted_pcd.points = o3d.utility.Vector3dVector(vis_points)
fitted_pcd.normals = o3d.utility.Vector3dVector(vis_normals)
# Create color code from variance
colors = np.zeros_like(vis_points)
colors[:,0] = vis_var
colors[:,2] = 1 - vis_var
fitted_pcd.colors = o3d.utility.Vector3dVector(colors)
o3d.visualization.draw_geometries([fitted_pcd])
np.savez(f"gpis_states/{args.exp_name}_gpis.npz", mean=test_mean, var=test_var, normal=test_normal, ub=ub, lb=lb)
init_tip_pose = torch.tensor([[[0.05,0.05, 0.02],[0.06,-0.0, -0.01],[0.03,-0.04,0.0],[-0.07,-0.01, 0.02]]]).double().to(device)
init_joint_angles = torch.tensor(robot_configs[args.hand]["ref_q"].tolist()).unsqueeze(0).double().to(device)
if args.mode == "fc":
compliance = torch.tensor([[80.0,80.0,80.0,160.0]]).to(device) * 2.0
else:
compliance = torch.tensor([[80.0,80.0,80.0,160.0]]).to(device)
friction_mu = args.friction
if args.hand == "leap": # Not supported in the paper.
robot_urdf = "assets/leap_hand/robot.urdf"
elif args.hand == "allegro": # Used in the paper
robot_urdf = "assets/allegro_hand/allegro_hand_description_left.urdf"
if args.mode == "fc":
grasp_optimizer = optimizers[args.mode](robot_urdf,
ee_link_names=robot_configs[args.hand]["ee_link_name"],
ee_link_offsets=robot_configs[args.hand]["ee_link_offset"].tolist(),
anchor_link_names=robot_configs[args.hand]["collision_links"],
anchor_link_offsets=robot_configs[args.hand]["collision_offsets"].tolist(),
collision_pairs=robot_configs[args.hand]["collision_pairs"],
ref_q = robot_configs[args.hand]["ref_q"].tolist(),
optimize_target=True,
optimize_palm=True, # NOTE: Experimental
num_iters=args.num_iters,
palm_offset=WRIST_OFFSET,
uncertainty=20.0,
# Useless for now
mass=args.mass,
com=[args.com_x,args.com_y,args.com_z],
gravity=False)
elif args.mode == "sp":
grasp_optimizer = optimizers[args.mode](robot_urdf,
ee_link_names=robot_configs[args.hand]["ee_link_name"],
ee_link_offsets=robot_configs[args.hand]["ee_link_offset"].tolist(),
anchor_link_names=robot_configs[args.hand]["collision_links"],
anchor_link_offsets=robot_configs[args.hand]["collision_offsets"].tolist(),
collision_pairs=robot_configs[args.hand]["collision_pairs"],
ref_q = robot_configs[args.hand]["ref_q"].tolist(),
optimize_target=True,
optimize_palm=True, # NOTE: Experimental
num_iters=args.num_iters,
palm_offset=WRIST_OFFSET,
mass=args.mass, com=center[:3],
gravity=False,
weight_config=weight_config)
num_guesses = len(WRIST_OFFSET)
init_joint_angles = init_joint_angles.repeat_interleave(num_guesses,dim=0)
#target_pose = target_pose.repeat_interleave(num_guesses,dim=0)
compliance = compliance.repeat_interleave(num_guesses,dim=0)
debug_tip_pose = grasp_optimizer.forward_kinematics(init_joint_angles, torch.from_numpy(WRIST_OFFSET).to(device))
target_pose = debug_tip_pose.mean(dim=1, keepdim=True).repeat(1,4,1)
target_pose = target_pose + (debug_tip_pose - target_pose) * 0.3
if args.vis_gpis:
for i in range(debug_tip_pose.shape[0]):
tips, targets, arrows = vis_grasp(debug_tip_pose[i], target_pose[i])
o3d.visualization.draw_geometries([pcd, *tips, *targets, *arrows])
if args.mode == "sp":
opt_joint_angles, opt_compliance, opt_target_pose, opt_palm_pose, opt_margin, opt_R, opt_t = grasp_optimizer.optimize(init_joint_angles,target_pose, compliance, friction_mu, gpis, verbose=True)
opt_tip_pose = grasp_optimizer.forward_kinematics(opt_joint_angles, opt_palm_pose)
elif args.mode == "fc":
opt_tip_pose, opt_compliance, opt_target_pose, opt_palm_pose, opt_margin, opt_joint_angles = grasp_optimizer.optimize(init_joint_angles, target_pose, compliance, friction_mu, gpis, verbose=True)
#print("init joint angles:",init_joint_angles)
# Visualize target and tip pose
pcd.colors = o3d.utility.Vector3dVector(np.array([0.0, 0.0, 1.0] * len(pcd.points)).reshape(-1,3))
grasp_vis = GraspVisualizer(robot_urdf, pcd)
# Visualize grasp in pybullet
# After transformation
coord = o3d.geometry.TriangleMesh.create_coordinate_frame(size=0.05)
floor = o3d.geometry.TriangleMesh.create_box(width=0.5, height=0.5, depth=0.01).translate([-0.25,-0.25,-0.01])
idx_list = []
print("Optimal compliance:", opt_compliance)
for i in range(opt_tip_pose.shape[0]):
if opt_margin[i].min() > 0.0:
idx_list.append(i)
else:
continue
if args.fast_exp:
continue
tips, targets, arrows = vis_grasp(opt_tip_pose[i], opt_target_pose[i])
grasp_vis.visualize_grasp(joint_angles=opt_joint_angles[i].detach().cpu().numpy(),
wrist_pose=opt_palm_pose[i].detach().cpu().numpy(),
target_pose=opt_target_pose[i].detach().cpu().numpy())
o3d.visualization.draw_geometries([pcd, *tips, *targets, *arrows])
print("Feasible indices:",idx_list, "Feasible rate:", len(idx_list)/opt_tip_pose.shape[0])
if len(idx_list) > 0:
np.save(f"data/contact_{args.exp_name}.npy", opt_tip_pose.cpu().detach().numpy()[idx_list])
np.save(f"data/target_{args.exp_name}.npy", opt_target_pose.cpu().detach().numpy()[idx_list])
np.save(f"data/wrist_{args.exp_name}.npy", opt_palm_pose.cpu().detach().numpy()[idx_list])
np.save(f"data/compliance_{args.exp_name}.npy", opt_compliance.cpu().detach().numpy()[idx_list])
if args.mode == "prob":
np.save(f"data/joint_angle_{args.exp_name}.npy", opt_joint_angles.cpu().detach().numpy()[idx_list])