-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
225 lines (187 loc) · 9.93 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import numpy as np
import os
import torch
from tqdm import tqdm
import imageio
import cv2
import time
import torchvision
import torch.nn.functional as F
import torch.optim as optim
from load_data import load_llff
from model import get_embedding_function,nerf2,FlexibleNeRFModel,get_embedding_function
from utils import get_image_rays,meshgrid,ndc_rays,get_minibatches,cumprod,sampling,psnr_loss,mse
device=torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
weights_path="/vinai/sskar/NERF/ckpts/checkpoint.ckpt"
img_save_path="/vinai/sskar/NERF/gen_imgs/"
depth_save_path="/vinai/sskar/NERF/depth_imgs/"
def volume_renderer(radiance_field,depth,ray_direction,noise,white_bg):
one_e_10=torch.tensor([1e10],dtype=ray_direction.dtype,device=ray_direction.device)
dists=depth[:,1:]-depth[:,:-1] #(4096,63)
dists=torch.cat((dists,one_e_10.expand(depth[:,:1].shape)),dim=-1)#4096,64 (adding 1e10 as the distance for the last sample point; this means the the reiman sum with the last distance equals a big number)
# dists=dists*ray_direction.unsqueeze(1).norm(p=2,dim=-1)
dists=dists*ray_direction[...,None,:].norm(p=2, dim=-1)#this to convert to real world units.
# dists=dists*ray_direction.unsqueeze(1)
rgb=torch.sigmoid(radiance_field[...,:3])
density=radiance_field[...,3]
noise=0.0
sigma=F.relu(density+noise)
# print(sigma.shape)
# print(dists.shape)
alpha=1.0-torch.exp(-sigma*dists)
# weights=alpha*torch.cumprod()
weights=alpha*cumprod(torch.exp(-sigma*dists)+1e-10)#(Ti*(1-exp(-sigma*delta)))see eq 3
rgb_map=rgb*weights.unsqueeze(2)
rgb_map=torch.sum(rgb_map,dim=-2)#(n_rays,3(4096,3))
depth_map=depth*weights
depth_map=torch.sum(depth_map,dim=-1)
acc_map=weights.sum(dim=-1)
disp_map=1.0/torch.max(1e-10*torch.ones_like(depth_map),depth_map/acc_map) # inverse of depth map
if white_bg:
rgb_map=rgb_map+(1.0-acc_map[...,None])
# print(rgb_map.shape,disp_map.shape,acc_map.shape,depth_map.shape)
return (rgb_map,disp_map,acc_map,weights,depth_map)
# print(weights.shape)
def nerf_net(model,points,rays,chunksize,point_embedding,dir_embedding):
points1=points.reshape((-1,points.shape[-1]))
# print("points1",points1.shape)
pt_embedding=point_embedding(points1)
if dir_embedding is not None:
# print(rays.shape)
viewdirs=rays[...,None,-3:]
input_dirs=viewdirs.expand(points.shape)
# viewdirs=viewdirs.unsqueeze(1).expand(4096,64+128,3) or (4096,64,3)
# print(viewdirs.shape)
input_dirs1=input_dirs.reshape((-1,input_dirs.shape[-1]))
viewdir_embedding=dir_embedding(input_dirs1)
embedded=torch.cat((pt_embedding,viewdir_embedding),dim=-1)
batches=get_minibatches(embedded,chunksize=chunksize)
pred=[model(batch) for batch in batches]
radiance_field=torch.cat(pred,dim=0)#(4096*64,4)
# print(radiance_field.shape)
# print(points.shape)
radiance_field=radiance_field.reshape(list(points.shape[:-1])+[radiance_field.shape[-1]])#(4096,64,4)
# print(radiance_field.shape)
return (radiance_field)
# ((ro,rd,near,far,viewdirs),dim=-1)#4096,11(3+3+1+1+3)
def pred_radiance(rays,coarse_model,fine_model,mode,encode_pos,encode_dir):
n_rays=rays.shape[0]
r_origin,r_direction=rays[...,:3],rays[...,3:6]
bounds=rays[...,6:8].view((-1,1,2))
near,far=bounds[...,0],bounds[...,1]
coarse_points=torch.linspace(0.0,1.0,64,dtype=r_origin.dtype,device=r_origin.device)
z_vals=near*(1.0-coarse_points)+far*coarse_points#Sample linearly in disparity space, as opposed to in depth space.
z_vals=z_vals.expand([n_rays,64])
# print("Z_vals:",z_vals.shape)
if mode=="train":
mids=0.5*(z_vals[...,1:]+z_vals[...,:-1])#samples between every set of coarse points
# print("Mids:",mids.shape)
# print(z_vals[0,1:],z_vals[0,:-1])
# print(mids[0,0])
upper=torch.cat((mids,z_vals[...,-1:]),dim=-1)#appending last and first points to the interval samples
lower=torch.cat((mids,z_vals[...,:1]),dim=-1)
r1=torch.rand(z_vals.shape,dtype=r_origin.dtype,device=r_origin.device)
z_vals=lower+(upper-lower)*r1 #stratified sampling (eq2 of paper)#4096,64
# print("Z_vals:",z_vals.shape)
#o+td
# print(r_origin.shape)#4096,3
# print(r_direction.shape)#4096,3
#origin(4096,64,3),direction(4096,64,3),points(4096,64,3)
ro1=r_origin.unsqueeze(1).expand(r_origin.shape[0],64,3)
rd1=r_direction.unsqueeze(1).expand(r_direction.shape[0],64,3)
z1=z_vals.unsqueeze(2).expand(z_vals.shape[0],64,3)
coarse_rays=ro1+rd1*z1
radiance_field=nerf_net(coarse_model,coarse_rays,rays,16384,encode_pos,encode_dir)
#coarse_rgb,caorse_disp,coarse_acc,weights,coarse_depth
coarse_rgb_map,coarse_disp_map,coarse_acc_map,weights,coarse_depth_map=volume_renderer(radiance_field,z_vals,r_direction,0,False)
#fine points
z_vals_mid=0.5*(z_vals[...,1:]+z_vals[...,:-1])#points between the points
fine_points=sampling(z_vals_mid,weights[...,1:-1],nf=64,det=True)#all weights except 1st and lst since we only take points in betwween
fine_points=fine_points.detach()
z_vals,_=torch.sort(torch.cat((z_vals,fine_points),dim=-1),dim=-1)
ro2=r_origin.unsqueeze(1).expand(r_origin.shape[0],128,3)
rd2=r_direction.unsqueeze(1).expand(r_direction.shape[0],128,3)
z2=z_vals.unsqueeze(2).expand(z_vals.shape[0],128,3)
fine_rays=ro2+rd2*z2
radiance_field=nerf_net(fine_model,fine_rays,rays,16384,encode_pos,encode_dir)
#coarse_rgb,caorse_disp,coarse_acc,weights,coarse_depth
fine_rgb_map,fine_disp_map,fine_acc_map,_,fine_depth_map=volume_renderer(radiance_field,z_vals,r_direction,0,False)
# fine_rgb_map,fine_disp_map,fine_acc_map=None,None,None
return (coarse_rgb_map,coarse_disp_map,coarse_acc_map,fine_rgb_map,fine_disp_map,fine_acc_map)
def run_1_nerf(height,width,focal_length,coarse_model,fine_model,ray_origin,ray_direction,mode,encode_pos,encode_dir):
viewdirs=ray_direction#(directions64*64*3 pixels)
viewdirs=viewdirs/viewdirs.norm(p=2,dim=-1).unsqueeze(-1)
# print(torch.norm(viewdirs,dim=-1))
viewdirs=viewdirs.view((-1,3))
# print("Normalized ray directions:",viewdirs.shape)
restore_shapes=[ray_direction.shape,ray_direction.shape[:-1],ray_direction.shape[:-1]]
# print("Shape:",restore_shapes)
if fine_model:
restore_shapes+=restore_shapes
# print("restore shapes:",restore_shapes)
#ndc ryas
ro,rd=ndc_rays(height,width,focal_length,1.0,ray_origin,ray_direction)#ndc samples from 1 to infinity
# print("ndc:",ro.shape)
# print("ndc:",rd.shape)
# print(torch.norm(rd,dim=-1))
ro=ro.view((-1,3))
rd=rd.view((-1,3))
#clip all depth not betn far and near
near=0*torch.ones_like(rd[...,:1])
far=1*torch.ones_like(rd[...,:1])
rays=torch.cat((ro,rd,near,far,viewdirs),dim=-1)#4096,11(3+3+1+1+3)
# print(rays.shape)
batches=get_minibatches(rays,chunksize=16384)
pred=[pred_radiance(batch,coarse_model,fine_model,"val",encode_pos,encode_dir) for batch in batches]
synthesized_images=list(zip(*pred))
synthesized_images=[torch.cat(image,dim=0) if image[0] is not None else (None) for image in synthesized_images]
# print(len(synthesized_images))
if mode=="val":
synthesized_images=[image.view(shape) if image is not None else None for (image,shape) in zip(synthesized_images,restore_shapes)]
if fine_model:
return(tuple(synthesized_images))
else:
tuple(synthesized_images+[None,None,None])
return (tuple(synthesized_images))
images,poses,bds,render_poses,test_idx=load_llff(basedir="/vinai/sskar/NERF/nerf_llff_data/fern",factor=8)
hwf=poses[0,:3,-1]
H,W,focal=hwf
hwf=[int(H),int(W),focal]
render_poses=torch.from_numpy(render_poses)
#model
encode_postion=get_embedding_function(num_encoding_functions=6,include_input=True,log_sampling=True)#get_embedding_function(L=6,include_input=True,log_sampling=True)
encode_direction=get_embedding_function(num_encoding_functions=4,include_input=True,log_sampling=True)#get_embedding_function(L=4,include_input=True,log_sampling=True)
# num_layers=4,hidden_size=128,skip_connect_every=4,num_encoding_fn_xyz=6,num_encoding_fn_dir=4,include_input_xyz=True,include_input_dir=True,use_viewdirs=True
coarse_model=FlexibleNeRFModel(num_layers=4,hidden_size=64*2,skip_connect_every=4,num_encoding_fn_xyz=6,num_encoding_fn_dir=4,include_input_xyz=True,include_input_dir=True,use_viewdirs=True
).to(device)
fine_model=FlexibleNeRFModel(num_layers=4,hidden_size=64*2,skip_connect_every=4,num_encoding_fn_xyz=6,num_encoding_fn_dir=4,include_input_xyz=True,include_input_dir=True,use_viewdirs=True
).to(device)
checkpoint=torch.load(weights_path,map_location="cpu")
print(checkpoint.keys())
coarse_model.load_state_dict(checkpoint["model_coarse_state_dict"])
fine_model.load_state_dict(checkpoint["model_fine_state_dict"])
print("loaded weights for fern")
coarse_model=coarse_model.eval()
fine_model=fine_model.eval()
render_poses=render_poses.float().to(device)
for idx,pose in enumerate(tqdm(render_poses)):
with torch.no_grad():
pose=pose[:3,:4]
ray_origin,ray_direction=get_image_rays(hwf[0],hwf[1],hwf[2],pose)
rgb_coarse,disp_coarse,_,rgb_fine,disp_fine,_=run_1_nerf(hwf[0],hwf[1],hwf[2],coarse_model,fine_model,ray_origin,ray_direction,"val",
encode_postion,encode_direction)
rgb_img=rgb_fine#(378,504,3)
disp=disp_fine
#save rgb image
rgb=rgb_img[:,:,:3]
rgb=rgb.permute(2,0,1)
img=np.array(torchvision.transforms.ToPILImage()(rgb.detach().cpu()))
savefile=os.path.join(img_save_path,str(idx)+".png")
imageio.imwrite(savefile,img)
#save depth image
disp_img=disp
disp_img=(disp_img-disp_img.min())/(disp_img.max()-disp_img.min())
disp_img=disp_img.clamp(0,1)*255
disp_img=disp_img.detach().cpu().numpy().astype(np.uint8)
savefile=os.path.join(depth_save_path,str(idx)+".png")
imageio.imwrite(savefile,disp_img)