-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathggxcc.c
819 lines (687 loc) · 22.7 KB
/
ggxcc.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
#define SCHED_IMPLEMENTATION
#include "mm_sched.h"
#define JRC_DDS_IMPLEMENTATION
#include "jrc_dds.h"
#define RYG_SRGB_CONV_IMPLEMENTATION
#include "ryg_srgb_conv.h"
#include <stdint.h>
#if !defined(_MSC_VER)
#include <cpuid.h>
#endif
// ***************************************************************************
// jrc_time.h
#ifdef WIN32
#include <windows.h>
#else
#include <sys/time.h>
#endif
int64_t jrcGetTime()
{
#ifdef WIN32
static int64_t ticksPerSec = 0;
LARGE_INTEGER pc;
if (!ticksPerSec)
{
LARGE_INTEGER freq;
QueryPerformanceFrequency(&freq);
ticksPerSec = freq.QuadPart;
}
QueryPerformanceCounter(&pc);
return pc.QuadPart * 1000l / ticksPerSec;
#else
struct timeval tv;
gettimeofday(&tv, NULL);
return (int64_t)tv.tv_usec / 1000l + (int64_t)tv.tv_sec * 1000l;
#endif
}
// ***************************************************************************
/*
major axis
direction target sc tc ma
---------- ------------------------------- --- --- ---
+rx TEXTURE_CUBE_MAP_POSITIVE_X_ARB -rz -ry rx
-rx TEXTURE_CUBE_MAP_NEGATIVE_X_ARB +rz -ry rx
+ry TEXTURE_CUBE_MAP_POSITIVE_Y_ARB +rx +rz ry
-ry TEXTURE_CUBE_MAP_NEGATIVE_Y_ARB +rx -rz ry
+rz TEXTURE_CUBE_MAP_POSITIVE_Z_ARB +rx -ry rz
-rz TEXTURE_CUBE_MAP_NEGATIVE_Z_ARB -rx -ry rz
s = ( sc/|ma| + 1 ) / 2
t = ( tc/|ma| + 1 ) / 2
*/
// ***************************************************************************
// Minimal vector lib
typedef float vec2_t[2];
typedef float vec3_t[3];
#define Vec3Set(o, a, b, c) ((o)[0] = (a), (o)[1] = (b), (o)[2] = (c))
#define Vec3Scale(o, s, v) ((o)[0] = (s) * (v)[0], (o)[1] = (s) * (v)[1], (o)[2] = (s) * (v)[2])
#define Vec3Add(o, a, b) ((o)[0] = (a)[0] + (b)[0], (o)[1] = (a)[1] + (b)[1], (o)[2] = (a)[2] + (b)[2])
#define DotProduct(a, b) ((a)[0] * (b)[0] + (a)[1] * (b)[1] + (a)[2] * (b)[2])
#define CLAMP(i, min, max) (((i) < (min)) ? (min) : ((i) > (max)) ? (max) : (i))
#define MIN(a,b) ( ((a) < (b)) ? (a) : (b) )
#define MAX(a,b) ( ((a) > (b)) ? (a) : (b) )
void Vec3Normalize(vec3_t v)
{
float invLength = 1.0f / sqrt(DotProduct(v,v));
Vec3Scale(v, invLength, v);
}
void MapCubeToVec3(vec3_t v, vec2_t st, int face)
{
int axis = face / 2;
int neg = face & 1;
v[0] = st[0] * 2.0f - 1.0f;
v[1] = 1.0f - st[1] * 2.0f;
v[0] = (face == 5) ? -v[0] : v[0];
v[2] = neg ? v[axis] : -v[axis];
v[axis] = neg ? -1.0f : 1.0f;
}
// ***************************************************************************
// ***************************************************************************
// Excerpt from https://github.com/castano/nvidia-texture-tools/blob/master/src/nvtt/CubeSurface.cpp
// Copyright (c) 2009-2011 Ignacio Castano <[email protected]>
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
// Solid angle of an axis aligned quad from (0,0,1) to (x,y,1)
// See: http://www.fizzmoll11.com/thesis/ for a derivation of this formula.
static float areaElement(float x, float y) {
return atan2(x*y, sqrtf(x*x + y*y + 1));
}
// Solid angle of a hemicube texel.
static float solidAngleTerm(unsigned int x, unsigned int y, float inverseEdgeLength) {
// Transform x,y to [-1, 1] range, offset by 0.5 to point to texel center.
float u = ((float)(x) + 0.5f) * (2 * inverseEdgeLength) - 1.0f;
float v = ((float)(y) + 0.5f) * (2 * inverseEdgeLength) - 1.0f;
//nvDebugCheck(u >= -1.0f && u <= 1.0f);
//nvDebugCheck(v >= -1.0f && v <= 1.0f);
#if 1
// Exact solid angle:
float x0 = u - inverseEdgeLength;
float y0 = v - inverseEdgeLength;
float x1 = u + inverseEdgeLength;
float y1 = v + inverseEdgeLength;
float solidAngle = areaElement(x0, y0) - areaElement(x0, y1) - areaElement(x1, y0) + areaElement(x1, y1);
//nvDebugCheck(solidAngle > 0.0f);
return solidAngle;
#else
// This formula is equivalent, but not as precise.
float pixel_area = nv::square(2.0f * inverseEdgeLength);
float dist_square = 1.0f + nv::square(u) + nv::square(v);
float cos_theta = 1.0f / sqrt(dist_square);
float cos_theta_d2 = cos_theta / dist_square; // Funny this is just 1/dist^3 or cos(tetha)^3
return pixel_area * cos_theta_d2;
#endif
}
// ***************************************************************************
float convertNativeCoordToTexCoord(int coord, int res, float warp)
{
float tc = (coord + 0.5f) / (float)(res);
if (warp != 0.0f)
{
tc = tc * 2.0f - 1.0f;
tc *= warp * tc * tc + 1.0f;
tc = tc * 0.5f + 0.5f;
}
return tc;
}
float calcWarp(int res)
{
if (res != 1)
return res * res / (float)((res - 1) * (res - 1) * (res - 1));
else
return 0.0f;
}
void genNorm(float norm[4], int x, int y, int face, int res, float warp)
{
float st[2];
st[0] = convertNativeCoordToTexCoord(x, res, warp);
st[1] = convertNativeCoordToTexCoord(y, res, warp);
MapCubeToVec3(norm, st, face);
Vec3Normalize(norm);
norm[3] = solidAngleTerm(x, y, 1.0f / res);
}
float *formatDataForConvolutionScalar(uint8_t *rgba8, int inRes)
{
int face, y, x;
unsigned char *inPixel = rgba8;
float *outData = malloc(inRes * inRes * 6 * 5 * sizeof(*outData));
float *outPixel = outData;
for (face = 0; face < 6; face++)
{
for (y = 0; y < inRes; y++)
{
vec2_t v;
v[1] = -1.0f + 1.0f / inRes + 2.0f * y / inRes ;
for (x = 0; x < inRes; x++)
{
v[0] = -1.0f + 1.0f / inRes + 2.0f * x / inRes ;
*outPixel++ = 1.0f / sqrt(v[0] * v[0] + v[1] * v[1] + 1.0f);
*outPixel++ = solidAngleTerm(x, y, 1.0f / inRes);
*outPixel++ = ryg_srgb8_to_float(*inPixel++);
*outPixel++ = ryg_srgb8_to_float(*inPixel++);
*outPixel++ = ryg_srgb8_to_float(*inPixel++);
inPixel++;
}
}
}
return outData;
}
float *formatDataForConvolutionSSE2(uint8_t *rgba8, int inRes)
{
int face, y, x;
unsigned char *inPixel = rgba8;
float *outData = _mm_malloc(inRes * inRes * 6 * 5 * sizeof(*outData), 16);
float *outPixel = outData;
for (face = 0; face < 6; face++)
{
for (y = 0; y < inRes; y++)
{
vec2_t v;
v[1] = -1.0f + 1.0f / inRes + 2.0f * y / inRes ;
for (x = 0; x < inRes; x += 4)
{
int sx;
for (sx = 0; sx < 4; sx++)
{
v[0] = -1.0f + 1.0f / inRes + 2.0f * (x + sx) / inRes ;
*outPixel++ = 1.0f / sqrt(v[0] * v[0] + v[1] * v[1] + 1.0f);
}
for (sx = 0; sx < 4; sx++)
{
float solidAngle = solidAngleTerm((x + sx), y, 1.0f / inRes);
*outPixel++ = ryg_srgb8_to_float(*inPixel++) * solidAngle;
*outPixel++ = ryg_srgb8_to_float(*inPixel++) * solidAngle;
*outPixel++ = ryg_srgb8_to_float(*inPixel++) * solidAngle;
*outPixel++ = solidAngle;
inPixel++;
}
}
}
}
return outData;
}
float *(*formatDataForConvolution)(uint8_t *, int) = formatDataForConvolutionScalar;
void convolveFaceToVectorScalar(float outColor[3], float *outWeightAccum, float *vN_vE_FaceSpace, float *inDataFP32, int face, int width, int height, float roughness, float minNL)
{
float color[3] = {0.0f, 0.0f, 0.0f}, weightAccum = 0.0f;
float alpha = roughness * roughness;
float aa = alpha * alpha;
// constants to speed up ggx calculation in the main loop
float c1 = 0.5f * aa - 0.5f;
float c2 = c1 + 1.0f;
// delta for NL per coordinate increment
float deltaNL_perX = vN_vE_FaceSpace[0] * 2.0f / width;
float deltaNL_perY = vN_vE_FaceSpace[1] * 2.0f / height;
// value of NL at left side of texture, starts from top and incremented to bottom
float baseNL = vN_vE_FaceSpace[0] * (-1.0f + 1.0f / width) + vN_vE_FaceSpace[1] * (-1.0f + 1.0f / height) + vN_vE_FaceSpace[2];
// determine valid Y range
// bail out if none
float NL = baseNL;
if (deltaNL_perX > 0.0f)
NL += deltaNL_perX * (width - 1);
int startY = 0, endY = height;
if (deltaNL_perY == 0.0f)
{
if (NL <= minNL)
goto ConvolveFinish;
}
else if (deltaNL_perY < 0.0f)
{
if (NL <= minNL)
goto ConvolveFinish;
endY = ceil((NL - minNL) / -deltaNL_perY);
if (endY > height)
endY = height;
}
else if (NL <= minNL)
{
startY = ceil(-(NL - minNL) / deltaNL_perY);
if (startY > height)
goto ConvolveFinish;
baseNL += deltaNL_perY * startY;
}
float *base_norm_angle_color = inDataFP32 + ((face * width * height) + (startY * width)) * 5;
int leftY = endY - startY;
for (; leftY; leftY--, baseNL += deltaNL_perY, base_norm_angle_color += width * 5)
{
// determine valid X range
// skip line if none
NL = baseNL;
int startX = 0, endX = width;
if (deltaNL_perX == 0.0f)
{
if (NL <= minNL)
continue;
}
else if (deltaNL_perX < 0.0f)
{
if (NL <= minNL)
continue;
endX = ceil((NL - minNL) / -deltaNL_perX);
if (endX > width)
endX = width;
}
else if (NL <= minNL)
{
startX = ceil(-(NL - minNL) / deltaNL_perX);
if (startX > width)
continue;
NL += deltaNL_perX * startX;
}
float *norm_angle_color = base_norm_angle_color + startX * 5;
int leftX = endX - startX;
for (; leftX; leftX--, NL += deltaNL_perX)
{
// normalize NL using stored inverse length of L
float nNL = NL * *norm_angle_color++;
// since vN == vE, acos(NH) = 0.5 * acos(NL)
// so calculate NH * NH from NL
// cos(t)^2 = cos(2t) * 0.5 + 0.5
//float NHNH = nNL * 0.5 + 0.5;
//float d = NHNH * (aa - 1.0f) + 1.0f;
float d = nNL * c1 + c2;
float dSpecular = aa / (d * d);
float weight = *norm_angle_color++ * dSpecular * nNL;
color[0] += *norm_angle_color++ * weight;
color[1] += *norm_angle_color++ * weight;
color[2] += *norm_angle_color++ * weight;
weightAccum += weight;
}
}
ConvolveFinish:
outColor[0] = color[0];
outColor[1] = color[1];
outColor[2] = color[2];
*outWeightAccum = weightAccum;
}
SSE2FUNC void convolveFaceToVectorSSE2(float outColor[3], float *outWeightAccum, float *vN_vE_FaceSpace, float *inDataFP32, int face, int width, int height, float roughness, float minNL)
{
__m128 results_4 = _mm_setzero_ps();
float alpha = roughness * roughness;
float aa = alpha * alpha;
// delta for NL per coordinate increment
float deltaNL_perX = vN_vE_FaceSpace[0] * 2.0f / width;
float deltaNL_perY = vN_vE_FaceSpace[1] * 2.0f / height;
// value of NL at left side of texture, starts from top and incremented to bottom
float baseNL = vN_vE_FaceSpace[0] * (-1.0f + 1.0f / width) + vN_vE_FaceSpace[1] * (-1.0f + 1.0f / height) + vN_vE_FaceSpace[2];
// determine valid Y range
// bail out if none
float NL = baseNL;
if (deltaNL_perX > 0.0f)
NL += deltaNL_perX * (width - 1);
int startY = 0, endY = height;
if (deltaNL_perY == 0.0f)
{
if (NL <= minNL)
goto ConvolveFinishSSE2;
}
else if (deltaNL_perY < 0.0f)
{
if (NL <= minNL)
goto ConvolveFinishSSE2;
endY = ceil((NL - minNL) / -deltaNL_perY);
if (endY > height)
endY = height;
}
else if (NL <= 0.0f)
{
startY = ceil(-(NL - minNL) / deltaNL_perY);
if (startY > height)
goto ConvolveFinishSSE2;
baseNL += deltaNL_perY * startY;
}
float *base_norm_angle_color = inDataFP32 + ((face * width * height) + (startY * width)) * 5;
// constants to speed up ggx calculation in the main loop
float c1 = 0.5f * aa - 0.5f;
float c2 = c1 + 1.0f;
__m128 aa_4 = _mm_set1_ps(aa);
__m128 c1_4 = _mm_set1_ps(c1);
__m128 c2_4 = _mm_set1_ps(c2);
__m128 deltaNL_per4X_4 = _mm_set1_ps(deltaNL_perX * 4.0f);
int leftY = endY - startY;
for (; leftY; leftY--, baseNL += deltaNL_perY, base_norm_angle_color += width * 5)
{
// determine valid X range
// skip line if none
NL = baseNL;
int startX = 0, endX = width;
if (deltaNL_perX == 0.0f)
{
if (NL <= minNL)
continue;
}
else if (deltaNL_perX < 0.0f)
{
if (NL <= minNL)
continue;
endX = ceil((NL - minNL) / -deltaNL_perX);
if (endX > width)
endX = width;
}
else if (NL <= minNL)
{
startX = ceil(-(NL - minNL) / deltaNL_perX);
if (startX > width)
continue;
}
startX = startX & ~0x03;
endX = (endX + 3) & ~0x03;
NL += deltaNL_perX * startX;
float *norm_angle_color = base_norm_angle_color + startX * 5;
__m128 NL_4 = _mm_setr_ps(NL, NL + deltaNL_perX, NL + 2.0f * deltaNL_perX, NL + 3.0f * deltaNL_perX);
int leftX4 = (endX - startX) / 4;
for (; leftX4; leftX4--, norm_angle_color += 20)
{
__m128 norm_4 = _mm_load_ps(norm_angle_color);
__m128 rgba0_4 = _mm_load_ps(norm_angle_color + 4);
__m128 rgba1_4 = _mm_load_ps(norm_angle_color + 8);
__m128 rgba2_4 = _mm_load_ps(norm_angle_color + 12);
__m128 rgba3_4 = _mm_load_ps(norm_angle_color + 16);
__m128 nNL_4 = _mm_mul_ps(NL_4, norm_4);
nNL_4 = _mm_max_ps(nNL_4, _mm_setzero_ps());
__m128 ggx_4 = _mm_mul_ps(nNL_4, c1_4);
ggx_4 = _mm_add_ps(ggx_4, c2_4);
ggx_4 = _mm_mul_ps(ggx_4, ggx_4);
ggx_4 = _mm_div_ps(aa_4, ggx_4);
__m128 weight_4 = _mm_mul_ps(nNL_4, ggx_4);
__m128 weight0_4 = _mm_shuffle_ps(weight_4, weight_4, _MM_SHUFFLE(0, 0, 0, 0));
__m128 weight1_4 = _mm_shuffle_ps(weight_4, weight_4, _MM_SHUFFLE(1, 1, 1, 1));
__m128 weight2_4 = _mm_shuffle_ps(weight_4, weight_4, _MM_SHUFFLE(2, 2, 2, 2));
__m128 weight3_4 = _mm_shuffle_ps(weight_4, weight_4, _MM_SHUFFLE(3, 3, 3, 3));
rgba0_4 = _mm_mul_ps(rgba0_4, weight0_4);
rgba1_4 = _mm_mul_ps(rgba1_4, weight1_4);
rgba2_4 = _mm_mul_ps(rgba2_4, weight2_4);
rgba3_4 = _mm_mul_ps(rgba3_4, weight3_4);
__m128 subtotal1_4 = _mm_add_ps(rgba0_4, rgba1_4);
__m128 subtotal2_4 = _mm_add_ps(rgba2_4, rgba3_4);
results_4 = _mm_add_ps(results_4, subtotal1_4);
results_4 = _mm_add_ps(results_4, subtotal2_4);
NL_4 = _mm_add_ps(NL_4, deltaNL_per4X_4);
}
}
ConvolveFinishSSE2:
outColor[0] = AS_FLOAT(GET_128(results_4).m128_u32[0]);
outColor[1] = AS_FLOAT(GET_128(results_4).m128_u32[1]);
outColor[2] = AS_FLOAT(GET_128(results_4).m128_u32[2]);
*outWeightAccum = AS_FLOAT(GET_128(results_4).m128_u32[3]);
}
void (*convolveFaceToVector)(float[3], float *, float *, float *, int, int, int, float, float) = convolveFaceToVectorScalar;
void convolveCubemapToPixel(uint8_t *outData, int outRes, int outNumMips, int outPixelCount, float *inDataFP32, int width, int height, int simSamples)
{
int outMipRes;
uint8_t *outPixel = outData + outPixelCount * 4;
float color[3] = {0.0f, 0.0f, 0.0f};
float vN_vE[4];
// determine outFace, outY, outX
outMipRes = outRes;
int outNumFacePixels = 0;
while(outMipRes)
{
outNumFacePixels += outMipRes * outMipRes;
outMipRes >>= 1;
}
int outFace = outPixelCount / outNumFacePixels;
outPixelCount -= outFace * outNumFacePixels;
outMipRes = outRes;
int outMipNum = 0;
while (outPixelCount >= outMipRes * outMipRes)
{
outPixelCount -= outMipRes * outMipRes;
outMipRes >>= 1;
outMipNum++;
}
int outY = outPixelCount / outMipRes;
outPixelCount -= outY * outMipRes;
int outX = outPixelCount;
// first mip is min roughness
// last three mips are roughness 1 (~diffuse)
// only 4x4 (third last mip) should be used in engine
float roughness = outMipNum / (float)(outNumMips - 3);
float minRoughness = 0.5f / (float)(outNumMips - 3);
roughness = CLAMP(roughness, minRoughness, 1.0f);
float outWarp = calcWarp(outMipRes);
genNorm(vN_vE, outX, outY, outFace, outMipRes, outWarp);
float weightAccum = 0.0f;
int inFace;
for (inFace = 0; inFace < 6; inFace++)
{
int inAxis = inFace / 2;
int inAxisNeg = inFace & 1;
float faceColor[3];
float faceWeightAccum = 0.0f;
float vN_vE_FaceSpace[4];
// transform vN_vE to face space
vN_vE_FaceSpace[0] = (inAxis == 0) ? (inAxisNeg ? vN_vE[2] : -vN_vE[2]) : ((inFace == 5) ? -vN_vE[0] : vN_vE[0]);
vN_vE_FaceSpace[1] = (inAxis == 1) ? (inAxisNeg ? -vN_vE[2] : vN_vE[2]) : -vN_vE[1];
vN_vE_FaceSpace[2] = inAxisNeg ? -vN_vE[inAxis] : vN_vE[inAxis];
// use importance sampling equation to use smaller area
float minNL = 0.0f;
if (simSamples)
{
float alpha = roughness * roughness;
float aa = alpha * alpha;
float lastSample = (float)simSamples / (float)(simSamples + 1);
minNL = sqrt((1.0 - lastSample)/((aa - 1.0f) * lastSample + 1.0f));
}
convolveFaceToVector(faceColor, &faceWeightAccum, vN_vE_FaceSpace, inDataFP32, inFace, width, height, roughness, minNL);
Vec3Add(color, color, faceColor);
weightAccum += faceWeightAccum;
}
if (weightAccum)
weightAccum = 1.0f / weightAccum;
Vec3Scale(color, weightAccum, color);
outPixel[0] = ryg_float_to_srgb8(color[0]);
outPixel[1] = ryg_float_to_srgb8(color[1]);
outPixel[2] = ryg_float_to_srgb8(color[2]);
outPixel[3] = 255;
}
struct convolveInfo
{
uint8_t *outData;
int outRes;
int outNumMips;
float *inDataFP32;
int inWidth;
int inHeight;
int simSamples;
};
void convolveCubemapToPixelThreaded(void *pArg, struct scheduler *s, sched_uint begin, sched_uint end, sched_uint thread)
{
struct convolveInfo *info = pArg;
sched_uint i;
for (i = begin; i < end; i++)
convolveCubemapToPixel(info->outData, info->outRes, info->outNumMips, i, info->inDataFP32, info->inWidth, info->inHeight, info->simSamples);
}
int main(int argc, char *argv[])
{
char *inFilename = NULL, *outFilename = NULL;
unsigned char *inData;
ddsType_t type;
ddsFlags_t flags;
int inWidth, inHeight, inNumMips;
int simSamples = 100;
int numThreads = SCHED_DEFAULT;
int detect = 1;
printf("\nGGXCC: GGX cube map convolver for ioquake3's OpenGL2 renderer\n");
int arg;
for (arg = 1; arg < argc; arg++)
{
if (argv[arg][0] == '-')
{
if (strcmp(argv[arg], "-o") == 0 && arg + 1 < argc)
{
outFilename = argv[arg + 1];
arg++;
}
else if (strcmp(argv[arg], "-t") == 0 && arg + 1 < argc)
{
numThreads = atoi(argv[arg + 1]);
if (numThreads <= 0)
{
printf("Error! Number of threads must be >= 1.\n");
return 0;
}
printf("Using %d threads.\n", numThreads);
arg++;
}
else if (strcmp(argv[arg], "-s") == 0 && arg + 1 < argc)
{
if (strcmp(argv[arg+1], "on") == 0)
{
convolveFaceToVector = convolveFaceToVectorSSE2;
formatDataForConvolution = formatDataForConvolutionSSE2;
printf("SSE2 enabled.\n");
detect = 0;
}
else if (strcmp(argv[arg+1], "off") == 0)
{
convolveFaceToVector = convolveFaceToVectorScalar;
formatDataForConvolution = formatDataForConvolutionScalar;
printf("SSE2 disabled.\n");
detect = 0;
}
arg++;
}
else if (strcmp(argv[arg], "-i") == 0 && arg + 1 < argc)
{
simSamples = atoi(argv[arg + 1]);
if (simSamples < 0)
{
printf("Error! Number of samples must be >= 0.\n");
return 0;
}
if (simSamples == 0)
printf("Using all samples.\n", simSamples);
else
printf("Using %d simulated samples.\n", simSamples);
arg++;
}
}
else if (!inFilename)
inFilename = argv[arg];
}
unsigned int cpuInfo[4];
#if !defined(_MSC_VER)
__cpuid(1, cpuInfo[0], cpuInfo[1], cpuInfo[2], cpuInfo[3]);
#else
__cpuid(cpuInfo, 1);
#endif
unsigned int cpuInfo3 = cpuInfo[3];
if (!inFilename)
{
printf("Usage: %s [options] <input.dds> -o <output.dds>\n", argv[0]);
printf("Available options:\n");
printf(" -o <output.dds> - Set output filename. Default is output.dds.\n");
printf(" -t <threads> - Set number of threads. Default is all.\n");
printf(" -s <on|off|auto> - Enable SSE2 optimizations. Default is autodetect.\n");
printf(" -i <samples> - Simulate importance sampling for speedup.\n");
printf(" Disable with 0. Default is 100.\n");
printf("\nOnly dds, 8-bit RGBA files are accepted as input.\n");
return 0;
}
if (cpuInfo3 & (1 << 26) && detect)
{
printf("SSE2 autodetected.\n");
convolveFaceToVector = convolveFaceToVectorSSE2;
formatDataForConvolution = formatDataForConvolutionSSE2;
}
if (!outFilename)
outFilename = "output.dds";
inData = jrcDdsLoad(inFilename, &type, &flags, &inWidth, &inHeight, &inNumMips);
if (!inData)
{
printf("Error loading %s!\n", inFilename);
return 0;
}
if (type != DDSTYPE_RGBA)
{
printf("Error! Image format must be RGBA32!\n");
return 0;
}
if (!(flags | DDSFLAG_CUBEMAP))
{
printf("Error! File must contain a cubemap!\n");
return 0;
}
if (inWidth != inHeight)
{
printf("Error! Texture faces must be square!\n");
return 0;
}
int inRes = inWidth;
int inNumPixels = inWidth * inHeight * 6;
int outRes = inRes;
int outNumPixels = 0;
int mipRes = outRes;
int numMips = 0;
int outNumFacePixels = 0;
while (mipRes)
{
outNumFacePixels += mipRes * mipRes;
numMips++;
mipRes >>= 1;
}
outNumPixels = outNumFacePixels * 6;
void *sched_memory;
struct scheduler sched;
if (numThreads != 1)
{
sched_size sched_memory_size;
scheduler_init(&sched, &sched_memory_size, numThreads, 0);
sched_memory = calloc(sched_memory_size, 1);
scheduler_start(&sched, sched_memory);
}
printf("Reading %d pixels (%dx%dx6, 1 mip) from %s\n", inNumPixels, inWidth, inHeight, inFilename);
printf("Writing %d pixels (%dx%dx6, %d mips) to %s\n", outNumPixels, outRes, outRes, numMips, outFilename);
printf("Working...\n");
int64_t startTime = jrcGetTime();
unsigned char *outData = malloc(outNumPixels * 4);
float *inDataFP32 = formatDataForConvolution(inData, inRes);
if (numThreads != 1)
{
struct sched_task task;
struct convolveInfo info;
info.outData = outData;
info.outRes = outRes;
info.outNumMips = numMips;
info.inDataFP32 = inDataFP32;
info.inWidth = inWidth;
info.inHeight = inHeight;
info.simSamples = simSamples;
scheduler_add(&task, &sched, convolveCubemapToPixelThreaded, &info, outNumPixels);
scheduler_join(&sched, &task);
}
else
{
int i;
for (i = 0; i < outNumPixels; i++)
convolveCubemapToPixel(outData, outRes, numMips, i, inDataFP32, inWidth, inHeight, simSamples);
}
printf("Saving...\n");
jrcDdsSave(outFilename, DDSTYPE_RGBA, DDSFLAG_CUBEMAP, outRes, outRes, numMips, outData);
int64_t endTime = jrcGetTime();
printf("\n%.3f seconds elapsed.\n", (endTime - startTime) / 1000.0f);
if (numThreads != 1)
{
scheduler_stop(&sched);
free(sched_memory);
}
return 0;
}