forked from enarjord/passivbot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparticle_swarm_optimization.py
739 lines (706 loc) · 30.1 KB
/
particle_swarm_optimization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
import os
os.environ["NOJIT"] = "false"
from downloader import Downloader, load_hlc_cache
import argparse
import asyncio
import json
import numpy as np
import traceback
from copy import deepcopy
from backtest import backtest
from multiprocessing import Pool, shared_memory
from njit_funcs import round_dynamic
from pure_funcs import (
analyze_fills,
denumpyize,
get_template_live_config,
ts_to_date,
ts_to_date_utc,
date_to_ts,
tuplify,
sort_dict_keys,
determine_passivbot_mode,
get_empty_analysis,
calc_scores,
)
from procedures import (
add_argparse_args,
prepare_optimize_config,
load_live_config,
make_get_filepath,
load_exchange_key_secret_passphrase,
prepare_backtest_config,
dump_live_config,
)
from time import sleep, time
import logging
import logging.config
logging.config.dictConfig({"version": 1, "disable_existing_loggers": True})
def backtest_wrap(config_: dict, ticks_caches: dict):
"""
loads historical data from disk, runs backtest and returns relevant metrics
"""
config = {
**{"long": deepcopy(config_["long"]), "short": deepcopy(config_["short"])},
**{
k: config_[k]
for k in [
"starting_balance",
"latency_simulation_ms",
"symbol",
"market_type",
"config_no",
]
},
**{k: v for k, v in config_["market_specific_settings"].items()},
}
if config["symbol"] in ticks_caches:
ticks = ticks_caches[config["symbol"]]
else:
ticks = np.load(config_["ticks_cache_fname"])
try:
fills_long, fills_short, stats = backtest(config, ticks)
longs, shorts, sdf, analysis = analyze_fills(fills_long, fills_short, stats, config)
"""
with open("logs/debug_pso.txt", "a") as f:
f.write(json.dumps({"config": denumpyize(config), "analysis": analysis}) + "\n")
"""
logging.debug(
f"backtested {config['symbol']: <12} pa distance long {analysis['pa_distance_mean_long']:.6f} "
+ f"pa distance short {analysis['pa_distance_mean_short']:.6f} adg long {analysis['adg_long']:.6f} "
+ f"adg short {analysis['adg_short']:.6f} std long {analysis['pa_distance_std_long']:.5f} "
+ f"std short {analysis['pa_distance_std_short']:.5f}"
)
except Exception as e:
analysis = get_empty_analysis()
logging.error(f'error with {config["symbol"]} {e}')
logging.error("config")
traceback.print_exc()
with open(make_get_filepath("tmp/particle_swarm_optimization_errors.txt"), "a") as f:
f.write(json.dumps([time(), "error", str(e), denumpyize(config)]) + "\n")
return analysis
class ParticleSwarmOptimization:
def __init__(self, config: dict):
self.config = config
self.do_long = config["long"]["enabled"]
self.do_short = config["short"]["enabled"]
self.n_particles = max(config["n_particles"], len(config["starting_configs"]))
self.w = config["w"]
self.c0 = config["c0"]
self.c1 = config["c1"]
self.starting_configs = config["starting_configs"]
self.iters = config["iters"]
self.n_cpus = config["n_cpus"]
self.pool = Pool(processes=config["n_cpus"])
self.long_bounds = sort_dict_keys(config[f"bounds_{self.config['passivbot_mode']}"]["long"])
self.short_bounds = sort_dict_keys(config[f"bounds_{self.config['passivbot_mode']}"]["short"])
self.symbols = config["symbols"]
self.identifying_name = (
f"{len(self.symbols)}_symbols" if len(self.symbols) > 1 else self.symbols[0]
)
self.now_date = ts_to_date(time())[:19].replace(":", "-")
self.results_fpath = make_get_filepath(
f"results_particle_swarm_optimization_{self.config['passivbot_mode']}/{self.now_date}_{self.identifying_name}/"
)
self.exchange_name = config["exchange"] + ("_spot" if config["market_type"] == "spot" else "")
self.market_specific_settings = {
s: json.load(
open(
os.path.join(
self.config["base_dir"],
self.exchange_name,
s,
"caches",
"market_specific_settings.json",
)
)
)
for s in self.symbols
}
self.date_range = f"{self.config['start_date']}_{self.config['end_date']}"
self.bt_dir = os.path.join(self.config["base_dir"], self.exchange_name)
self.ticks_cache_fname = (
f"caches/{self.date_range}{'_ohlcv_cache.npy' if config['ohlcv'] else '_ticks_cache.npy'}"
)
"""
self.ticks_caches = (
{s: np.load(f"{self.bt_dir}/{s}/{self.ticks_cache_fname}") for s in self.symbols}
if self.n_particles > len(self.symbols)
else {}
)
"""
self.ticks_caches = {}
self.current_best_config = None
# [{'config': dict, 'task': process, 'id_key': tuple}]
self.workers = [None for _ in range(self.n_cpus)]
# swarm = {swarm_key: str: {'long': {'score': float, 'config': dict}, 'short': {...}}}
self.swarm = {}
# velocities_long/short = {swarm_key: {k: for k in bounds}}
self.velocities_long = {}
self.velocities_short = {}
# lbests_long/short = {swarm_key: {'config': dict, 'score': float}}
self.lbests_long = {}
self.lbests_short = {}
self.gbest_long = None
self.gbest_short = None
# {identifier: {'config': dict,
# 'single_results': {symbol_finished: single_backtest_result},
# 'in_progress': set({symbol_in_progress}))}
self.unfinished_evals = {}
self.iter_counter = 0
def post_process(self, wi: int):
# a worker has finished a job; process it
cfg = deepcopy(self.workers[wi]["config"])
id_key = self.workers[wi]["id_key"]
swarm_key = cfg["swarm_key"]
symbol = cfg["symbol"]
self.unfinished_evals[id_key]["single_results"][symbol] = self.workers[wi]["task"].get()
self.unfinished_evals[id_key]["in_progress"].remove(symbol)
results = deepcopy(self.unfinished_evals[id_key]["single_results"])
with open(self.results_fpath + "positions.txt", "a") as f:
f.write(
json.dumps({"long": cfg["long"], "short": cfg["short"], "swarm_key": swarm_key})
+ "\n"
)
if set(results) == set(self.symbols):
# completed multisymbol iter
scores_res = calc_scores(self.config, results)
scores, means, raws, keys = (
scores_res["scores"],
scores_res["means"],
scores_res["raws"],
scores_res["keys"],
)
self.swarm[swarm_key]["long"]["score"] = scores["long"]
self.swarm[swarm_key]["short"]["score"] = scores["short"]
# check if better than lbest long
if (
type(self.lbests_long[swarm_key]["score"]) == str
or scores["long"] < self.lbests_long[swarm_key]["score"]
):
self.lbests_long[swarm_key] = deepcopy(
{"config": cfg["long"], "score": scores["long"]}
)
# check if better than lbest short
if (
type(self.lbests_short[swarm_key]["score"]) == str
or scores["short"] < self.lbests_short[swarm_key]["score"]
):
self.lbests_short[swarm_key] = deepcopy(
{"config": cfg["short"], "score": scores["short"]}
)
tmp_fname = f"{self.results_fpath}{cfg['config_no']:06}_best_config"
is_better = False
# check if better than gbest long
if self.gbest_long is None or scores["long"] < self.gbest_long["score"]:
self.gbest_long = deepcopy({"config": cfg["long"], "score": scores["long"]})
is_better = True
line = f"i{cfg['config_no']} - new best config long, score {round_dynamic(scores['long'], 4)} "
for key, _ in keys:
line += f"{key} {round_dynamic(raws['long'][key], 4)} "
logging.info(line)
tmp_fname += "_long"
json.dump(
results,
open(f"{self.results_fpath}{cfg['config_no']:06}_result_long.json", "w"),
indent=4,
sort_keys=True,
)
# check if better than gbest short
if self.gbest_short is None or scores["short"] < self.gbest_short["score"]:
self.gbest_short = deepcopy({"config": cfg["short"], "score": scores["short"]})
is_better = True
line = f"i{cfg['config_no']} - new best config short, score {round_dynamic(scores['short'], 4)} "
for key, _ in keys:
line += f"{key} {round_dynamic(raws['short'][key], 4)} "
logging.info(line)
tmp_fname += "_short"
json.dump(
results,
open(f"{self.results_fpath}{cfg['config_no']:06}_result_short.json", "w"),
indent=4,
sort_keys=True,
)
if is_better:
best_config = {
"long": deepcopy(self.gbest_long["config"]),
"short": deepcopy(self.gbest_short["config"]),
}
best_config["result"] = {
"symbol": f"{len(self.symbols)}_symbols",
"exchange": self.config["exchange"],
"start_date": self.config["start_date"],
"end_date": self.config["end_date"],
}
dump_live_config(best_config, tmp_fname + ".json")
elif cfg["config_no"] % 25 == 0:
logging.info(f"i{cfg['config_no']}")
results["config_no"] = cfg["config_no"]
with open(self.results_fpath + "all_results.txt", "a") as f:
f.write(
json.dumps(
{"config": {"long": cfg["long"], "short": cfg["short"]}, "results": results}
)
+ "\n"
)
del self.unfinished_evals[id_key]
self.workers[wi] = None
def start_new_particle_position(self, wi: int):
self.iter_counter += 1 # up iter counter on each new config started
swarm_key = self.swarm_keys[self.iter_counter % self.n_particles]
template = get_template_live_config(self.config["passivbot_mode"])
new_position = {
**{
"long": deepcopy(template["long"]),
"short": deepcopy(template["short"]),
},
**{
k: self.config[k]
for k in ["starting_balance", "latency_simulation_ms", "market_type"]
},
**{"symbol": self.symbols[0], "config_no": self.iter_counter},
}
for side in ["long", "short"]:
new_position[side]["enabled"] = getattr(self, f"do_{side}")
new_position[side]["backwards_tp"] = self.config[f"backwards_tp_{side}"]
for key in self.long_bounds:
# get new velocities from gbest and lbest
self.velocities_long[swarm_key][key] = (
self.w * self.velocities_long[swarm_key][key]
+ self.c0
* np.random.random()
* (
self.lbests_long[swarm_key]["config"][key]
- self.swarm[swarm_key]["long"]["config"][key]
)
+ self.c1
* np.random.random()
* (self.gbest_long["config"][key] - self.swarm[swarm_key]["long"]["config"][key])
)
new_position["long"][key] = max(
min(
self.swarm[swarm_key]["long"]["config"][key]
+ self.velocities_long[swarm_key][key],
self.long_bounds[key][1],
),
self.long_bounds[key][0],
)
self.velocities_short[swarm_key][key] = (
self.w * self.velocities_short[swarm_key][key]
+ self.c0
* np.random.random()
* (
self.lbests_short[swarm_key]["config"][key]
- self.swarm[swarm_key]["short"]["config"][key]
)
+ self.c1
* np.random.random()
* (self.gbest_short["config"][key] - self.swarm[swarm_key]["short"]["config"][key])
)
new_position["short"][key] = max(
min(
self.swarm[swarm_key]["short"]["config"][key]
+ self.velocities_short[swarm_key][key],
self.short_bounds[key][1],
),
self.short_bounds[key][0],
)
self.swarm[swarm_key]["long"] = {
"config": deepcopy(new_position["long"]),
"score": "in_progress",
}
self.swarm[swarm_key]["short"] = {
"config": deepcopy(new_position["short"]),
"score": "in_progress",
}
logging.debug(
f"starting new position {new_position['config_no']} - long "
+ " ".join([str(round_dynamic(e[1], 3)) for e in sorted(new_position["long"].items())])
+ " - short: "
+ " ".join([str(round_dynamic(e[1], 3)) for e in sorted(new_position["short"].items())])
)
new_position["market_specific_settings"] = self.market_specific_settings[
new_position["symbol"]
]
new_position[
"ticks_cache_fname"
] = f"{self.bt_dir}/{new_position['symbol']}/{self.ticks_cache_fname}"
new_position["passivbot_mode"] = self.config["passivbot_mode"]
new_position["swarm_key"] = swarm_key
self.workers[wi] = {
"config": deepcopy(new_position),
"task": self.pool.apply_async(
backtest_wrap, args=(deepcopy(new_position), self.ticks_caches)
),
"id_key": new_position["config_no"],
}
self.unfinished_evals[new_position["config_no"]] = {
"config": deepcopy(new_position),
"single_results": {},
"in_progress": set([self.symbols[0]]),
}
def start_new_initial_eval(self, wi: int, swarm_key: str):
self.iter_counter += 1 # up iter counter on each new config started
config = {
**{
"long": deepcopy(self.swarm[swarm_key]["long"]["config"]),
"short": deepcopy(self.swarm[swarm_key]["short"]["config"]),
},
**{
k: self.config[k]
for k in ["starting_balance", "latency_simulation_ms", "market_type"]
},
**{
"symbol": self.symbols[0],
"initial_eval_key": swarm_key,
"config_no": self.iter_counter,
"swarm_key": swarm_key,
},
}
line = f"starting new initial eval {config['config_no']} of {self.n_particles} "
if self.do_long:
line += " - long: " + " ".join(
[
f"{e[0][:2]}{e[0][-2:]}" + str(round_dynamic(e[1], 3))
for e in sorted(self.swarm[swarm_key]["long"]["config"].items())
]
)
if self.do_short:
line += " - short: " + " ".join(
[
f"{e[0][:2]}{e[0][-2:]}" + str(round_dynamic(e[1], 3))
for e in sorted(self.swarm[swarm_key]["short"]["config"].items())
]
)
logging.info(line)
config["market_specific_settings"] = self.market_specific_settings[config["symbol"]]
config["ticks_cache_fname"] = f"{self.bt_dir}/{config['symbol']}/{self.ticks_cache_fname}"
config["passivbot_mode"] = self.config["passivbot_mode"]
self.workers[wi] = {
"config": deepcopy(config),
"task": self.pool.apply_async(backtest_wrap, args=(deepcopy(config), self.ticks_caches)),
"id_key": config["config_no"],
}
self.unfinished_evals[config["config_no"]] = {
"config": deepcopy(config),
"single_results": {},
"in_progress": set([self.symbols[0]]),
}
self.swarm[swarm_key]["long"]["score"] = "in_progress"
self.swarm[swarm_key]["short"]["score"] = "in_progress"
def run(self):
try:
self.run_()
finally:
pass
def run_(self):
# initialize ticks cache
"""
if self.n_cpus >= len(self.symbols) or (
"cache_ticks" in self.config and self.config["cache_ticks"]
):
"""
# initialize swarm
for _ in range(self.n_particles):
cfg_long = deepcopy(self.config["long"])
cfg_short = deepcopy(self.config["short"])
swarm_key = str(time()) + str(np.random.random())
self.velocities_long[swarm_key] = {}
self.velocities_short[swarm_key] = {}
for k in self.long_bounds:
cfg_long[k] = np.random.uniform(self.long_bounds[k][0], self.long_bounds[k][1])
cfg_short[k] = np.random.uniform(self.short_bounds[k][0], self.short_bounds[k][1])
self.velocities_long[swarm_key][k] = np.random.uniform(
-abs(self.long_bounds[k][0] - self.long_bounds[k][1]),
abs(self.long_bounds[k][0] - self.long_bounds[k][1]),
)
self.velocities_short[swarm_key][k] = np.random.uniform(
-abs(self.short_bounds[k][0] - self.short_bounds[k][1]),
abs(self.short_bounds[k][0] - self.short_bounds[k][1]),
)
self.swarm[swarm_key] = {
"long": {"score": "not_started", "config": cfg_long},
"short": {"score": "not_started", "config": cfg_short},
}
self.lbests_long[swarm_key] = deepcopy(self.swarm[swarm_key]["long"])
self.lbests_short[swarm_key] = deepcopy(self.swarm[swarm_key]["short"])
self.gbest_long = deepcopy({"config": cfg_long, "score": np.inf})
self.gbest_short = deepcopy({"config": cfg_short, "score": np.inf})
self.swarm_keys = sorted(self.swarm)
# add starting configs
for side in ["long", "short"]:
swarm_keys = sorted(self.swarm)
bounds = getattr(self, f"{side}_bounds")
for cfg in self.starting_configs:
cfg = {k: max(bounds[k][0], min(bounds[k][1], cfg[side][k])) for k in bounds}
cfg["enabled"] = getattr(self, f"do_{side}")
cfg["backwards_tp"] = self.config[f"backwards_tp_{side}"]
if cfg not in [self.swarm[k][side]["config"] for k in self.swarm]:
self.swarm[swarm_keys.pop()][side]["config"] = deepcopy(cfg)
# start main loop
while True:
# first check for finished jobs
for wi in range(len(self.workers)):
if self.workers[wi] is not None and self.workers[wi]["task"].ready():
self.post_process(wi)
if self.iter_counter >= self.iters + self.n_particles:
if all(worker is None for worker in self.workers):
# break when all work is finished
break
else:
# check for idle workers
for wi in range(len(self.workers)):
if self.workers[wi] is not None:
continue
# a worker is idle; give it a job
for id_key in self.unfinished_evals:
# check if unfinished evals
missing_symbols = set(self.symbols) - (
set(self.unfinished_evals[id_key]["single_results"])
| self.unfinished_evals[id_key]["in_progress"]
)
if missing_symbols:
# start eval for missing symbol
symbol = sorted(missing_symbols)[0]
config = deepcopy(self.unfinished_evals[id_key]["config"])
config["symbol"] = symbol
config["market_specific_settings"] = self.market_specific_settings[
config["symbol"]
]
config[
"ticks_cache_fname"
] = f"{self.bt_dir}/{config['symbol']}/{self.ticks_cache_fname}"
config["passivbot_mode"] = self.config["passivbot_mode"]
self.workers[wi] = {
"config": config,
"task": self.pool.apply_async(
backtest_wrap, args=(config, self.ticks_caches)
),
"id_key": id_key,
}
self.unfinished_evals[id_key]["in_progress"].add(symbol)
break
else:
# means all symbols are accounted for in all unfinished evals; start new eval
for swarm_key in self.swarm:
if self.swarm[swarm_key]["long"]["score"] == "not_started":
# means initial evals not yet done
self.start_new_initial_eval(wi, swarm_key)
break
else:
# means initial evals are done; start new position
self.start_new_particle_position(wi)
sleep(0.25)
async def main():
logging.basicConfig(format="", level=os.environ.get("LOGLEVEL", "INFO"))
parser = argparse.ArgumentParser(
prog="Optimize multi symbol", description="Optimize passivbot config multi symbol"
)
parser.add_argument(
"-o",
"--optimize_config",
type=str,
required=False,
dest="optimize_config_path",
default="configs/optimize/particle_swarm_optimization.hjson",
help="optimize config hjson file",
)
parser.add_argument(
"-t",
"--start",
type=str,
required=False,
dest="starting_configs",
default=None,
help="start with given live configs. single json file or dir with multiple json files",
)
parser.add_argument(
"-i", "--iters", type=int, required=False, dest="iters", default=None, help="n optimize iters"
)
parser.add_argument(
"-c", "--n_cpus", type=int, required=False, dest="n_cpus", default=None, help="n cpus"
)
parser.add_argument(
"-le",
"--long",
type=str,
required=False,
dest="long_enabled",
default=None,
help="long enabled: [y/n]",
)
parser.add_argument(
"-se",
"--short",
type=str,
required=False,
dest="short_enabled",
default=None,
help="short enabled: [y/n]",
)
parser.add_argument(
"-pm",
"--passivbot_mode",
"--passivbot-mode",
type=str,
required=False,
dest="passivbot_mode",
default=None,
help="passivbot mode options: [s/static_grid, r/recursive_grid, n/neat_grid]",
)
parser.add_argument(
"-sf",
"--score_formula",
"--score-formula",
type=str,
required=False,
dest="score_formula",
default=None,
help="passivbot score formula options: [adg_PAD_mean, adg_PAD_std, adg_DGstd_ratio, adg_mean, adg_min, adg_PAD_std_min]",
)
parser.add_argument(
"-oh",
"--ohlcv",
help="use 1m ohlcv instead of 1s ticks",
action="store_true",
)
parser = add_argparse_args(parser)
args = parser.parse_args()
args.symbol = "BTCUSDT" # dummy symbol
config = await prepare_optimize_config(args)
if args.score_formula is not None:
if args.score_formula not in [
"adg_PAD_mean",
"adg_PAD_std",
"adg_DGstd_ratio",
"adg_mean",
"adg_min",
"adg_PAD_std_min",
"adg_realized_PAD_mean",
"adg_realized_PAD_std",
]:
logging.error(f"unknown score formula {args.score_formula}")
logging.error(f"using score formula {config['score_formula']}")
else:
config["score_formula"] = args.score_formula
if args.passivbot_mode is not None:
if args.passivbot_mode in ["s", "static_grid", "static"]:
config["passivbot_mode"] = "static_grid"
elif args.passivbot_mode in ["r", "recursive_grid", "recursive"]:
config["passivbot_mode"] = "recursive_grid"
elif args.passivbot_mode in ["n", "neat_grid", "neat"]:
config["passivbot_mode"] = "neat_grid"
else:
raise Exception(f"unknown passivbot mode {args.passivbot_mode}")
passivbot_mode = config["passivbot_mode"]
assert passivbot_mode in [
"recursive_grid",
"static_grid",
"neat_grid",
], f"unknown passivbot mode {passivbot_mode}"
config.update(get_template_live_config(passivbot_mode))
config["long"]["backwards_tp"] = config["backwards_tp_long"]
config["short"]["backwards_tp"] = config["backwards_tp_short"]
config["exchange"] = load_exchange_key_secret_passphrase(config["user"])[0]
args = parser.parse_args()
if args.long_enabled is None:
config["long"]["enabled"] = config["do_long"]
else:
if "y" in args.long_enabled.lower():
config["long"]["enabled"] = config["do_long"] = True
elif "n" in args.long_enabled.lower():
config["long"]["enabled"] = config["do_long"] = False
else:
raise Exception("please specify y/n with kwarg -le/--long")
if args.short_enabled is None:
config["short"]["enabled"] = config["do_short"]
else:
if "y" in args.short_enabled.lower():
config["short"]["enabled"] = config["do_short"] = True
elif "n" in args.short_enabled.lower():
config["short"]["enabled"] = config["do_short"] = False
else:
raise Exception("please specify y/n with kwarg -le/--short")
if args.symbol is not None:
config["symbols"] = args.symbol.split(",")
if args.n_cpus is not None:
config["n_cpus"] = args.n_cpus
if args.base_dir is not None:
config["base_dir"] = args.base_dir
config["ohlcv"] = args.ohlcv
print()
lines = [(k, getattr(args, k)) for k in args.__dict__ if args.__dict__[k] is not None]
lines += [
(k, config[k])
for k in [
"start_date",
"end_date",
"w",
"c0",
"c1",
"maximum_pa_distance_std_long",
"maximum_pa_distance_std_short",
"maximum_pa_distance_mean_long",
"maximum_pa_distance_mean_short",
"maximum_loss_profit_ratio_long",
"maximum_loss_profit_ratio_short",
"clip_threshold",
]
if k in config and k not in [z[0] for z in lines]
]
for line in lines:
logging.info(f"{line[0]: <{max([len(x[0]) for x in lines]) + 2}} {line[1]}")
print()
# download ticks .npy file if missing
if config["ohlcv"]:
cache_fname = f"{config['start_date']}_{config['end_date']}_ohlcv_cache.npy"
else:
cache_fname = f"{config['start_date']}_{config['end_date']}_ticks_cache.npy"
exchange_name = config["exchange"] + ("_spot" if config["market_type"] == "spot" else "")
config["symbols"] = sorted(config["symbols"])
for symbol in config["symbols"]:
cache_dirpath = os.path.join(config["base_dir"], exchange_name, symbol, "caches", "")
if not os.path.exists(cache_dirpath + cache_fname) or not os.path.exists(
cache_dirpath + "market_specific_settings.json"
):
logging.info(f"fetching data {symbol}")
args.symbol = symbol
tmp_cfg = await prepare_backtest_config(args)
if config["ohlcv"]:
data = load_hlc_cache(
symbol,
config["start_date"],
config["end_date"],
base_dir=config["base_dir"],
spot=config["spot"],
exchange=config["exchange"],
)
else:
downloader = Downloader({**config, **tmp_cfg})
await downloader.get_sampled_ticks()
# prepare starting configs
cfgs = []
if args.starting_configs is not None:
logging.info("preparing starting configs...")
if os.path.isdir(args.starting_configs):
for fname in os.listdir(args.starting_configs):
try:
cfg = load_live_config(os.path.join(args.starting_configs, fname))
assert determine_passivbot_mode(cfg) == passivbot_mode, "wrong passivbot mode"
cfgs.append(cfg)
logging.info(f"successfully loaded config {fname}")
except Exception as e:
logging.error(f"error loading config {fname}: {e}")
elif os.path.exists(args.starting_configs):
try:
cfg = load_live_config(args.starting_configs)
assert determine_passivbot_mode(cfg) == passivbot_mode, "wrong passivbot mode"
cfgs.append(cfg)
logging.info(f"successfully loaded config {args.starting_configs}")
except Exception as e:
logging.error(f"error loading config {args.starting_configs}: {e}")
config["starting_configs"] = cfgs
particle_swarm_optimization = ParticleSwarmOptimization(config)
particle_swarm_optimization.run()
if __name__ == "__main__":
asyncio.run(main())