-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathpreprocess_num_lit.py
37 lines (27 loc) · 1.01 KB
/
preprocess_num_lit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import numpy as np
from tqdm import tqdm
import argparse
import pandas as pd
from pathlib import Path
parser = argparse.ArgumentParser(
description='Create literals'
)
parser.add_argument('--dataset', default='YAGO3-10', metavar='',
help='which dataset in {`YAGO3-10`, `FB15k`, `FB15k-237`} to be used? (default: YAGO3-10)')
args = parser.parse_args()
# Load vocab
vocab = np.load(f'{str(Path.home())}/.data/{args.dataset}/vocab_e1', allow_pickle=True)
ent2idx = vocab[0]
idx2ent = vocab[1]
# Load raw literals
df = pd.read_csv(f'data/{args.dataset}/literals/numerical_literals.txt', header=None, sep='\t')
rel2idx = {v: k for k, v in enumerate(df[1].unique())}
# Resulting file
num_lit = np.zeros([len(ent2idx), len(rel2idx)], dtype=np.float32)
# Create literal wrt vocab
for i, (s, p, lit) in tqdm(enumerate(df.values)):
try:
num_lit[ent2idx[s.lower()], rel2idx[p]] = lit
except KeyError:
continue
np.save(f'data/{args.dataset}/literals/numerical_literals.npy', num_lit)