-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathconfig.py
47 lines (35 loc) · 2.16 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
r"""
Config for paths, joint set, and normalizing scales.
"""
amass_data = ['ACCAD', 'BioMotionLab_NTroje', 'BMLhandball', 'BMLmovi', 'CMU', 'DanceDB', 'DFaust_67',
'Eyes_Japan_Dataset', 'HumanEva', 'MPI_HDM05', 'MPI_Limits', 'MPI_mosh', 'SFU', 'SSM_synced']
class paths:
raw_dipimu_dir = 'data/dataset_raw/DIP_IMU' # raw DIP-IMU dataset path (raw_dipimu_dir/s_01/*.pkl)
dipimu_dir = 'data/dataset_work/DIP_IMU' # output path for the preprocessed DIP-IMU dataset
# DIP recalculates the SMPL poses for TotalCapture dataset. You should acquire the pose data from the DIP authors.
raw_totalcapture_dip_dir = 'data/dataset_raw/TotalCapture/DIP_recalculate' # contain ground-truth SMPL pose (*.pkl)
raw_totalcapture_official_dir = 'data/dataset_raw/TotalCapture/official' # contain official gt (S1/acting1/*.txt)
totalcapture_dir = 'data/dataset_work/TotalCapture' # output path for the preprocessed TotalCapture dataset
raw_amass_dir = 'data/dataset_raw/AMASS' # raw DIP-IMU dataset path (raw_dipimu_dir/s_01/*.pkl)
amass_dir = 'data/dataset_work/AMASS' # output path for the preprocessed DIP-IMU dataset
example_dir = 'data/example' # example IMU measurements
male_smpl_file = 'models/SMPL_male.pkl' # official SMPL model path
female_smpl_file = 'models/SMPL_female.pkl' # official SMPL model path
weights_file = 'data/weights.pt' # network weight file
class joint_set:
leaf = [7, 8, 12, 20, 21]
full = list(range(1, 24))
reduced = [1, 2, 3, 4, 5, 6, 9, 12, 13, 14, 15, 16, 17, 18, 19]
ignored = [0, 7, 8, 10, 11, 20, 21, 22, 23]
lower_body = [0, 1, 2, 4, 5, 7, 8, 10, 11]
lower_body_parent = [None, 0, 0, 1, 2, 3, 4, 5, 6]
sensor = [18, 19, 4, 5, 15, 0, 1, 2, 9] # 传感器穿戴位置顺序
dip_imu = [7, 8, 11, 12, 0, 2, 9, 10, 1]
VERTEX_IDS = [1962, 5431, 1096, 4583, 412, 3021, 949, 4434, 3506]
SMPL_SENSOR = ['L_Elbow', 'R_Elbow', 'L_Knee', 'R_Knee', 'Head', 'Pelvis']
n_leaf = len(leaf)
n_full = len(full)
n_reduced = len(reduced)
n_ignored = len(ignored)
acc_scale = 30
vel_scale = 3