forked from spandey1296/Learn-Share-Hacktoberfest2021
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathRandomWalkMetropolisHastings.R
32 lines (28 loc) · 1.2 KB
/
RandomWalkMetropolisHastings.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# The R code implements a Gaussian Random Walk Metropolis algorithm to generate samples from the posterior distribution
# of the regression coefficients of the logistic regression model based on the logit dataset from the MCMC package in R.
rm(list=ls()) ## remove existing variables in environment
data(logit,package="mcmc") ## load logit dataset from MCMC package
Y <- logit$y
X <- data.matrix(logit[,2:5])
N=1e5 # sample.size
d=4 # dimension
s=20 # proposal variance
f <- function(beta) prod(dbinom(Y,size=1,prob=1/(1+exp(-X%*%beta))))*prod(dnorm(beta,0,s)) # target density
# markov chain
beta = matrix(0,nrow=N,ncol=d)
acc.prob = numeric(N) # initialize acceptance probability
## IMPLEMENTING SIMPLE RANDOM WALK METROPOLIS ALGORITHM
for(i in 2:N){
if(i%%1e3==0) print(i/1e3)
y =rnorm(d,0,0.48) + beta[i-1,]
alpha = min(1, f(y)/f(beta[i-1,]))
if(log(runif(1))<log(alpha)){
beta[i,] = y
acc.prob[i] = 1
}else{
beta[i,] = beta[i-1,]
}
}
mean(acc.prob) # check acceptance probability--should be ~0.23
plot(cumsum(acc.prob)/(1:N),col="red",type="l",xlab="",ylab="") # see running plot of acceptance probability--should convergence to 0.23
abline(h=0.23,col="blue",lty=2) # horizontal line at 0.23