forked from csmliu/STGAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
383 lines (332 loc) · 15.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import datetime
from functools import partial
import json
import traceback
import imlib as im
import numpy as np
import pylib
import tensorflow as tf
import tflib as tl
import data
import models
import os
# ==============================================================================
# = param =
# ==============================================================================
def boolean(s):
return s.lower() in ('true', 't', 'yes', 'y', '1')
parser = argparse.ArgumentParser()
# settings
dataroot_default = '/data/Datasets/CelebA/Img'
parser.add_argument('--dataroot', type=str, default=dataroot_default)
parser.add_argument('--gpu', type=str, default='all',
help='Specify which gpu to use by `CUDA_VISIBLE_DEVICES=num python train.py **kwargs`\
or `python train.py --gpu num` if you\'re running on a multi-gpu enviroment.\
You need to do nothing if your\'re running on a single-gpu environment or\
the gpu is assigned by a resource manager program.')
parser.add_argument('--threads', type=int, default=-1,
help='Control parallel computation threads,\
please leave it as is if no heavy cpu burden is observed.')
# model
att_default = ['Bald', 'Bangs', 'Black_Hair', 'Blond_Hair', 'Brown_Hair', 'Bushy_Eyebrows', 'Eyeglasses',
'Male', 'Mouth_Slightly_Open', 'Mustache', 'No_Beard', 'Pale_Skin', 'Young']
parser.add_argument('--atts', default=att_default, choices=data.Celeba.att_dict.keys(), nargs='+',
help='Attributes to modify by the model')
parser.add_argument('--img_size', type=int, default=128, help='input image size')
parser.add_argument('--shortcut_layers', type=int, default=4,
help='# of skip connections between the encoder and the decoder')
parser.add_argument('--inject_layers', type=int, default=4,
help='# of attribute vectors applied in the decoder')
parser.add_argument('--enc_dim', type=int, default=64)
parser.add_argument('--dec_dim', type=int, default=64)
parser.add_argument('--dis_dim', type=int, default=64)
parser.add_argument('--dis_fc_dim', type=int, default=1024,
help='# of discriminator fc channels')
parser.add_argument('--enc_layers', type=int, default=5)
parser.add_argument('--dec_layers', type=int, default=5)
parser.add_argument('--dis_layers', type=int, default=5)
# STGAN & STU
parser.add_argument('--label', type=str, default='diff', choices=['diff', 'target'])
parser.add_argument('--use_stu', type=boolean, default=True)
parser.add_argument('--stu_dim', type=int, default=64)
parser.add_argument('--stu_layers', type=int, default=4)
parser.add_argument('--stu_inject_layers', type=int, default=4)
parser.add_argument('--stu_kernel_size', type=int, default=3)
parser.add_argument('--stu_norm', type=str, default='none', choices=['none', 'bn', 'in'])
parser.add_argument('--stu_state', type=str, default='stu', choices=['stu', 'gru', 'direct'],
help='gru: gru arch.; stu: stu arch.; direct: directly pass the inner state to the outer layer')
parser.add_argument('--multi_inputs', type=int, default=1,
help='# of hierachical inputs (in the first several encoder layers')
parser.add_argument('--rec_loss_weight', type=float, default=100.0)
parser.add_argument('--one_more_conv', type=int, default=0, choices=[0, 1, 3],
help='0: no further conv after the decoder; 1: conv(k=1); 3: conv(k=3)')
# training
parser.add_argument('--mode', default='wgan', choices=['wgan', 'lsgan', 'dcgan'])
parser.add_argument('--epoch', type=int, default=200, help='# of epochs')
parser.add_argument('--init_epoch', type=int, default=100, help='# of epochs with init lr.')
parser.add_argument('--batch_size', type=int, default=32)
parser.add_argument('--lr', type=float, default=0.0002, help='learning rate')
parser.add_argument('--n_d', type=int, default=5, help='# of d updates per g update')
parser.add_argument('--thres_int', type=float, default=0.5)
parser.add_argument('--test_int', type=float, default=1.0)
parser.add_argument('--n_sample', type=int, default=64, help='# of sample images')
parser.add_argument('--save_freq', type=int, default=0,
help='save model evary save_freq iters, 0 means to save evary epoch.')
parser.add_argument('--sample_freq', type=int, default=0,
help='eval on validation set every sample_freq iters, 0 means to save evary epoch.')
# others
parser.add_argument('--use_cropped_img', action='store_true')
parser.add_argument('--experiment_name', default=datetime.datetime.now().strftime("%Y.%m.%d-%H%M%S"))
parser.add_argument('--num_ckpt', type=int, default=1)
parser.add_argument('--clear', default=False, action='store_true')
args = parser.parse_args()
# settings
dataroot = args.dataroot
if args.gpu != 'all':
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
threads = args.threads
# model
atts = args.atts
n_att = len(atts)
img_size = args.img_size
shortcut_layers = args.shortcut_layers
inject_layers = args.inject_layers
enc_dim = args.enc_dim
dec_dim = args.dec_dim
dis_dim = args.dis_dim
dis_fc_dim = args.dis_fc_dim
enc_layers = args.enc_layers
dec_layers = args.dec_layers
dis_layers = args.dis_layers
# STU
label = args.label
use_stu = args.use_stu
stu_dim = args.stu_dim
stu_layers = args.stu_layers
stu_inject_layers = args.stu_inject_layers
stu_kernel_size = args.stu_kernel_size
stu_norm = args.stu_norm
stu_state = args.stu_state
multi_inputs = args.multi_inputs
rec_loss_weight = float(args.rec_loss_weight)
one_more_conv = args.one_more_conv
# training
mode = args.mode
epoch = args.epoch
init_epoch = args.init_epoch
batch_size = args.batch_size
lr_base = args.lr
n_d = args.n_d
thres_int = args.thres_int
test_int = args.test_int
n_sample = args.n_sample
save_freq = args.save_freq
sample_freq = args.sample_freq
# others
use_cropped_img = args.use_cropped_img
experiment_name = args.experiment_name
num_ckpt = args.num_ckpt
clear = args.clear
pylib.mkdir('./output/%s' % experiment_name)
with open('./output/%s/setting.txt' % experiment_name, 'w') as f:
f.write(json.dumps(vars(args), indent=4, separators=(',', ':')))
# ==============================================================================
# = graphs =
# ==============================================================================
# data
if threads >= 0:
cpu_config = tf.ConfigProto(intra_op_parallelism_threads = threads//2,
inter_op_parallelism_threads = threads//2,
device_count = {'CPU': threads})
sess = tf.Session(config=cpu_config)
else:
sess = tl.session()
crop_ = not use_cropped_img
tr_data = data.Celeba(dataroot, atts, img_size, batch_size, part='train', sess=sess, crop=crop_)
val_data = data.Celeba(dataroot, atts, img_size, n_sample, part='val', shuffle=False, sess=sess, crop=crop_)
# models
Genc = partial(models.Genc, dim=enc_dim, n_layers=enc_layers, multi_inputs=multi_inputs)
Gdec = partial(models.Gdec, dim=dec_dim, n_layers=dec_layers, shortcut_layers=shortcut_layers,
inject_layers=inject_layers, one_more_conv=one_more_conv)
Gstu = partial(models.Gstu, dim=stu_dim, n_layers=stu_layers, inject_layers=stu_inject_layers,
kernel_size=stu_kernel_size, norm=stu_norm, pass_state=stu_state)
D = partial(models.D, n_att=n_att, dim=dis_dim, fc_dim=dis_fc_dim, n_layers=dis_layers)
# inputs
lr = tf.placeholder(dtype=tf.float32, shape=[])
xa = tr_data.batch_op[0]
a = tr_data.batch_op[1]
b = tf.random_shuffle(a)
_a = (tf.to_float(a) * 2 - 1) * thres_int
_b = (tf.to_float(b) * 2 - 1) * thres_int
xa_sample = tf.placeholder(tf.float32, shape=[None, img_size, img_size, 3])
_b_sample = tf.placeholder(tf.float32, shape=[None, n_att])
raw_b_sample = tf.placeholder(tf.float32, shape=[None, n_att])
# generate
z = Genc(xa)
zb = Gstu(z, _b-_a if label=='diff' else _b) if use_stu else z
xb_ = Gdec(zb, _b-_a if label=='diff' else _b)
with tf.control_dependencies([xb_]):
za = Gstu(z, _a-_a if label=='diff' else _a) if use_stu else z
xa_ = Gdec(za, _a-_a if label=='diff' else _a)
# discriminate
xa_logit_gan, xa_logit_att = D(xa)
xb__logit_gan, xb__logit_att = D(xb_)
# discriminator losses
if mode == 'wgan': # wgan-gp
wd = tf.reduce_mean(xa_logit_gan) - tf.reduce_mean(xb__logit_gan)
d_loss_gan = -wd
gp = models.gradient_penalty(D, xa, xb_)
elif mode == 'lsgan': # lsgan-gp
xa_gan_loss = tf.losses.mean_squared_error(tf.ones_like(xa_logit_gan), xa_logit_gan)
xb__gan_loss = tf.losses.mean_squared_error(tf.zeros_like(xb__logit_gan), xb__logit_gan)
d_loss_gan = xa_gan_loss + xb__gan_loss
gp = models.gradient_penalty(D, xa)
elif mode == 'dcgan': # dcgan-gp
xa_gan_loss = tf.losses.sigmoid_cross_entropy(tf.ones_like(xa_logit_gan), xa_logit_gan)
xb__gan_loss = tf.losses.sigmoid_cross_entropy(tf.zeros_like(xb__logit_gan), xb__logit_gan)
d_loss_gan = xa_gan_loss + xb__gan_loss
gp = models.gradient_penalty(D, xa)
xa_loss_att = tf.losses.sigmoid_cross_entropy(a, xa_logit_att)
d_loss = d_loss_gan + gp * 10.0 + xa_loss_att
# generator losses
if mode == 'wgan':
xb__loss_gan = -tf.reduce_mean(xb__logit_gan)
elif mode == 'lsgan':
xb__loss_gan = tf.losses.mean_squared_error(tf.ones_like(xb__logit_gan), xb__logit_gan)
elif mode == 'dcgan':
xb__loss_gan = tf.losses.sigmoid_cross_entropy(tf.ones_like(xb__logit_gan), xb__logit_gan)
xb__loss_att = tf.losses.sigmoid_cross_entropy(b, xb__logit_att)
xa__loss_rec = tf.losses.absolute_difference(xa, xa_)
g_loss = xb__loss_gan + xb__loss_att * 10.0 + xa__loss_rec * rec_loss_weight
# optim
d_var = tl.trainable_variables('D')
d_step = tf.train.AdamOptimizer(lr, beta1=0.5).minimize(d_loss, var_list=d_var)
g_var = tl.trainable_variables('G')
g_step = tf.train.AdamOptimizer(lr, beta1=0.5).minimize(g_loss, var_list=g_var)
# summary
show_weights = False
d_summary = tl.summary({
d_loss_gan: 'd_loss_gan',
gp: 'gp',
xa_loss_att: 'xa_loss_att',
}, scope='D')
lr_summary = tl.summary({lr: 'lr'}, scope='Learning_Rate')
g_summary = tl.summary({
xb__loss_gan: 'xb__loss_gan',
xb__loss_att: 'xb__loss_att',
xa__loss_rec: 'xa__loss_rec',
}, scope='G')
if show_weights:
d_histogram = tf.summary.merge([tf.summary.histogram(
name=i.name,
values=i
) for i in tf.get_collection(tf.GraphKeys.MODEL_VARIABLES, 'D')])
genc_histogram = tf.summary.merge([tf.summary.histogram(
name=i.name,
values=i
) for i in tf.get_collection(tf.GraphKeys.MODEL_VARIABLES, 'Genc')])
gdec_histogram = tf.summary.merge([tf.summary.histogram(
name=i.name,
values=i
) for i in tf.get_collection(tf.GraphKeys.MODEL_VARIABLES, 'Gdec')])
gstu_histogram = tf.summary.merge([tf.summary.histogram(
name=i.name,
values=i
) for i in tf.get_collection(tf.GraphKeys.MODEL_VARIABLES, 'Gstu')])
d_summary = tf.summary.merge([d_summary, lr_summary, d_histogram])
g_summary = tf.summary.merge([g_summary, genc_histogram, gdec_histogram, gstu_histogram])
else:
d_summary = tf.summary.merge([d_summary, lr_summary])
# sample
test_label = _b_sample - raw_b_sample if label=='diff' else _b_sample
if use_stu:
x_sample = Gdec(Gstu(Genc(xa_sample, is_training=False),
test_label, is_training=False), test_label, is_training=False)
else:
x_sample = Gdec(Genc(xa_sample, is_training=False), test_label, is_training=False)
# ==============================================================================
# = train =
# ==============================================================================
# iteration counter
it_cnt, update_cnt = tl.counter()
# saver
saver = tf.train.Saver(max_to_keep=num_ckpt)
# summary writer
summary_writer = tf.summary.FileWriter('./output/%s/summaries' % experiment_name, sess.graph)
# initialization
ckpt_dir = './output/%s/checkpoints' % experiment_name
pylib.mkdir(ckpt_dir)
try:
assert clear == False
tl.load_checkpoint(ckpt_dir, sess)
except:
print('NOTE: Initializing all parameters...')
sess.run(tf.global_variables_initializer())
# train
try:
# data for sampling
xa_sample_ipt, a_sample_ipt = val_data.get_next()
b_sample_ipt_list = [a_sample_ipt] # the first is for reconstruction
for i in range(len(atts)):
tmp = np.array(a_sample_ipt, copy=True)
tmp[:, i] = 1 - tmp[:, i] # inverse attribute
tmp = data.Celeba.check_attribute_conflict(tmp, atts[i], atts)
b_sample_ipt_list.append(tmp)
it_per_epoch = len(tr_data) // (batch_size * (n_d + 1))
max_it = epoch * it_per_epoch
for it in range(sess.run(it_cnt), max_it):
with pylib.Timer(is_output=False) as t:
sess.run(update_cnt)
# which epoch
epoch = it // it_per_epoch
it_in_epoch = it % it_per_epoch + 1
# learning rate
lr_ipt = lr_base / (10 ** (epoch // init_epoch))
# train D
for i in range(n_d):
d_summary_opt, _ = sess.run([d_summary, d_step], feed_dict={lr: lr_ipt})
summary_writer.add_summary(d_summary_opt, it)
# train G
g_summary_opt, _ = sess.run([g_summary, g_step], feed_dict={lr: lr_ipt})
summary_writer.add_summary(g_summary_opt, it)
# display
if (it + 1) % 1 == 0:
print("Epoch: (%3d) (%5d/%5d) Time: %s!" % (epoch, it_in_epoch, it_per_epoch, t))
# save
if (it + 1) % (save_freq if save_freq else it_per_epoch) == 0:
save_path = saver.save(sess, '%s/Epoch_(%d)_(%dof%d).ckpt'%(ckpt_dir, epoch, it_in_epoch, it_per_epoch))
print('Model is saved at %s!' % save_path)
# sample
if (it + 1) % (sample_freq if sample_freq else it_per_epoch) == 0:
x_sample_opt_list = [xa_sample_ipt, np.full((n_sample, img_size, img_size // 10, 3), -1.0)]
raw_b_sample_ipt = (b_sample_ipt_list[0].copy() * 2 - 1) * thres_int
for i, b_sample_ipt in enumerate(b_sample_ipt_list):
_b_sample_ipt = (b_sample_ipt * 2 - 1) * thres_int
if i > 0: # i == 0 is for reconstruction
_b_sample_ipt[..., i - 1] = _b_sample_ipt[..., i - 1] * test_int / thres_int
x_sample_opt_list.append(sess.run(x_sample, feed_dict={xa_sample: xa_sample_ipt,
_b_sample: _b_sample_ipt,
raw_b_sample: raw_b_sample_ipt}))
last_images = x_sample_opt_list[-1]
if i > 0: # add a mark (+/-) in the upper-left corner to identify add/remove an attribute
for nnn in range(last_images.shape[0]):
last_images[nnn, 2:5, 0:7, :] = 1.
if _b_sample_ipt[nnn, i-1] > 0:
last_images[nnn, 0:7, 2:5, :] = 1.
last_images[nnn, 1:6, 3:4, :] = -1.
last_images[nnn, 3:4, 1:6, :] = -1.
sample = np.concatenate(x_sample_opt_list, 2)
save_dir = './output/%s/sample_training' % experiment_name
pylib.mkdir(save_dir)
im.imwrite(im.immerge(sample, n_sample, 1), '%s/Epoch_(%d)_(%dof%d).jpg' % \
(save_dir, epoch, it_in_epoch, it_per_epoch))
except:
traceback.print_exc()
finally:
save_path = saver.save(sess, '%s/Epoch_(%d)_(%dof%d).ckpt' % (ckpt_dir, epoch, it_in_epoch, it_per_epoch))
print('Model is saved at %s!' % save_path)
sess.close()