-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.py
129 lines (106 loc) · 3.99 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import networkx as nx
import numpy as np
import torch
class S2VGraph(object):
def __init__(self, g, label, node_tags=None, node_features=None):
'''
g: a networkx graph
label: an integer graph label
node_tags: a list of integer node tags
node_features: a torch float tensor, one-hot representation of the tag that is used as input to neural nets
edge_mat: a torch long tensor, contain edge list, will be used to create torch sparse tensor
neighbors: list of neighbors (without self-loop)
'''
self.label = label
self.g = g
self.node_tags = node_tags
self.neighbors = []
self.node_features = 0
self.edge_mat = 0
self.max_neighbor = 0
def load_data(x, y, Normalize=True):
'''
dataset: name of dataset
test_proportion: ratio of test train split
seed: random seed for random splitting of dataset
'''
g_list = []
label_dict = {}
feat_dict = {}
# adj = np.load('dataset/%s/adj.npy' % (dataset))
# 矩阵总数
n_g = len(x)
# n_g = 50
for i in range(n_g):
n = x[i].shape[0]
l = int(y[i])
g = nx.Graph()
node_tags = []
node_features = []
n_edges = 0
for j in range(n):
g.add_node(j)
if j == n - 1:
row = [j, 1, j - 1]
else:
row = [j, 1, j + 1]
attr = x[i][j]
g.add_node(j, att=attr)
if not row[0] in feat_dict:
mapped = len(feat_dict)
feat_dict[row[0]] = mapped
node_tags.append(feat_dict[row[0]])
# if tmp > len(row):
node_features.append(attr)
n_edges += row[1]
for k in range(2, len(row)):
g.add_edge(j, row[k])
if node_features != []:
node_features = np.stack(node_features)
node_feature_flag = True
else:
node_features = None
node_feature_flag = False
g_list.append(S2VGraph(g, l, node_tags))
##################
# add labels and edge_mat
for g in g_list:
g.neighbors = [[] for i in range(len(g.g))]
for i, j in g.g.edges():
g.neighbors[i].append(j)
g.neighbors[j].append(i)
degree_list = []
for i in range(len(g.g)):
g.neighbors[i] = g.neighbors[i]
degree_list.append(len(g.neighbors[i]))
g.max_neighbor = max(degree_list)
g.label = label_dict[g.label]
edges = [list(pair) for pair in g.g.edges()]
edges.extend([[i, j] for j, i in edges])
deg_list = list(dict(g.g.degree(range(len(g.g)))).values())
g.edge_mat = torch.LongTensor(edges).transpose(0, 1)
# Extracting unique tag labels
tagset = set([])
for g in g_list:
tagset = tagset.union(set(g.node_tags))
tagset = list(tagset)
tag2index = {tagset[i]: i for i in range(len(tagset))}
for g in g_list:
g.node_features = torch.zeros(len(g.node_tags), len(g.g.nodes[0]['att']))
for i in range(len(g.node_tags)):
g.node_features[i] = torch.FloatTensor(g.g.nodes[i]['att'])
### Normalizing
if (Normalize):
X_concat = np.concatenate([graph.node_features.view(-1, graph.node_features.shape[1]) for graph in g_list])
Min = torch.Tensor(np.min(X_concat, axis=0))[:-2]
Ptp = torch.Tensor(np.ptp(X_concat, axis=0))[:-2]
for g in g_list:
g.node_features[:, :-2] = 2. * (g.node_features[:, :-2] - Min) / Ptp - 1
for g in g_list:
g.node_features2 = torch.zeros(len(g.node_tags), 2 * len(g.g.nodes[0]['att']))
for i in range(len(g.node_tags)):
if (i == 0):
g.node_features2[i] = torch.cat([g.node_features[i], g.node_features[i]])
else:
g.node_features2[i] = torch.cat([g.node_features[i], g.node_features[i] - g.node_features[i - 1]])
return g_list