-
Notifications
You must be signed in to change notification settings - Fork 0
/
meshnormals.py
41 lines (32 loc) · 1.42 KB
/
meshnormals.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import torch
class MeshNormals:
def __init__(self, device, faces, vertexIndex, vertexFaceNeighbors):
assert(vertexIndex is not None)
assert(vertexFaceNeighbors is not None)
self.device = device
self.faces = faces
self.vertexIndex = []
self.vertexFaceNeighbors = []
if vertexIndex is not None and vertexFaceNeighbors is not None:
for i in range(len(vertexIndex)):
self.vertexIndex.append(torch.tensor(vertexIndex[i]).to(self.device))
self.vertexFaceNeighbors.append(torch.tensor(vertexFaceNeighbors[i]).to(self.device))
def computeNormals(self, vertices):
'''
compute vertices normal
:param vertices: [..., verticesNumber, 3]
:return: normalized normal vectors [..., verticesNumber, 3]
'''
faces = self.faces
assert(faces is not None)
assert(vertices.shape[-1] == 3)
v1 = vertices[..., faces[:, 0], :]
v2 = vertices[..., faces[:, 1], :] - v1
v3 = vertices[..., faces[:, 2], :] - v1
faceNormals = torch.cross(v2, v3, dim=vertices.dim() - 1)
normals = torch.zeros_like(vertices)
for (ni, vi) in zip(self.vertexFaceNeighbors, self.vertexIndex):
vc4 = faceNormals[..., ni, :]
vc4 = torch.mean(vc4, -2)
normals[..., vi, :] = vc4
return torch.nn.functional.normalize(normals, 2, -1)