-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
373 lines (318 loc) · 15.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
# Weather4cast 2023 Starter Kit
#
# This Starter Kit builds on and extends the Weather4cast 2022 Starter Kit,
# the original license for which is included below.
#
# In line with the provisions of this license, all changes and additional
# code are also released unde the GNU General Public License as
# published by the Free Software Foundation, either version 3 of the License,
# or (at your option) any later version.
#
# Weather4cast 2022 Starter Kit
#
# Copyright (C) 2022
# Institute of Advanced Research in Artificial Intelligence (IARAI)
# This file is part of the Weather4cast 2022 Starter Kit.
#
# The Weather4cast 2022 Starter Kit is free software: you can redistribute it
# and/or modify it under the terms of the GNU General Public License as
# published by the Free Software Foundation, either version 3 of the License,
# or (at your option) any later version.
#
# The Weather4cast 2022 Starter Kit is distributed in the hope that it will be
# useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
# Contributors: Aleksandra Gruca, Pedro Herruzo, David Kreil, Stephen Moran
import argparse
import copy
import numpy as np
import pytorch_lightning as pl
from pytorch_lightning.callbacks import ModelCheckpoint, ModelSummary
from pytorch_lightning.plugins import DDPPlugin
from torch.utils.data import DataLoader, ConcatDataset
from pytorch_lightning import loggers as pl_loggers
from pytorch_lightning.loggers import WandbLogger
from pytorch_lightning.callbacks.early_stopping import EarlyStopping
import datetime
import os
import torch
import torch.nn.functional as F
import wandb
from utils.evaluate import recall_precision_f1_acc, get_confusion_matrix
from models.unet_lightning_w4c23 import UNet_Lightning as UNetModel
from utils.data_utils import load_config
from utils.data_utils import get_cuda_memory_usage
from utils.data_utils import tensor_to_submission_file
from utils.data_utils import get_dict_value
from utils.w4c_dataloader import RainData
from utils.evaluate import to_one_hot
class DataModule(pl.LightningDataModule):
""" Class to handle training/validation splits in a single object
"""
def __init__(self, params, training_params, mode):
super().__init__()
self.params = params
self.training_params = training_params
concat_train_val = get_dict_value(training_params, 'concat_train_val', False)
print("----------------------- concat_train_val: ", concat_train_val)
if mode in ['train']:
print("Loading TRAINING/VALIDATION dataset -- as test")
if concat_train_val:
self.val_ds = RainData('validation', **self.params)
self.train_ds = ConcatDataset([RainData('training', **self.params), self.val_ds])
else:
self.train_ds = RainData('training', **self.params)
self.val_ds = RainData('validation', **self.params)
print(f"Training dataset size: {len(self.train_ds)}")
if mode in ['val']:
print("Loading VALIDATION dataset -- as test")
self.val_ds = RainData('validation', **self.params)
if mode in ['predict']:
print("Loading PREDICTION/TEST dataset -- as test")
self.test_ds = RainData('test', **self.params)
def __load_dataloader(self, dataset, shuffle=True, pin=True):
dl = DataLoader(dataset,
batch_size=self.training_params['batch_size'],
num_workers=self.training_params['n_workers'],
shuffle=shuffle,
pin_memory=pin, prefetch_factor=2,
persistent_workers=False)
return dl
def train_dataloader(self):
return self.__load_dataloader(self.train_ds, shuffle=True, pin=True)
def val_dataloader(self):
return self.__load_dataloader(self.val_ds, shuffle=False, pin=True)
def test_dataloader(self):
return self.__load_dataloader(self.test_ds, shuffle=False, pin=True)
def load_model(Model, params, checkpoint_path='') -> pl.LightningModule:
""" loads a model from a checkpoint or from scratch if checkpoint_path='' """
p = {**params['experiment'], **params['dataset'], **params['train']}
if checkpoint_path == '':
print('-> Modelling from scratch! (no checkpoint loaded)')
model = Model(params['model'], p)
else:
print(f'-> Loading model checkpoint: {checkpoint_path}')
model = Model.load_from_checkpoint(checkpoint_path, UNet_params=params['model'], params=p)
return model
def get_trainer(gpus, params, mode):
""" get the trainer, modify here its options:
- save_top_k
"""
max_epochs = params['train']['max_epochs']
# max_epochs = 1
print("Trainig for", max_epochs, "epochs")
checkpoint_callback = ModelCheckpoint(monitor='val_loss_epoch', save_top_k=90, save_last=True,
filename='{epoch:02d}-{val_loss_epoch:.6f}')
parallel_training = None
ddpplugin = None
if gpus[0] == -1:
gpus = None
elif len(gpus) > 1:
parallel_training = 'ddp'
## ddpplugin = DDPPlugin(find_unused_parameters=True)
print(f"====== process started on the following GPUs: {gpus} ======")
date_time = datetime.datetime.now().strftime("%m%d-%H:%M")
version = params['experiment']['name']
version = version + '_' + date_time
# SET LOGGER
# if params['experiment']['logging']:
# tb_logger = pl_loggers.TensorBoardLogger(save_dir=params['experiment']['experiment_folder'],name=params['experiment']['sub_folder'], version=version, log_graph=True)
# else:
# tb_logger = False
if params['experiment']['logging'] and mode != "predict" and mode != "val":
# Create a WandbLogger instead of TensorBoardLogger
wandb_logger = WandbLogger(
project='w4c23',
save_dir=params['experiment']['experiment_folder'],
name=params['experiment']['sub_folder'],
)
else:
wandb_logger = False
if mode == "predict" or mode == "val" or len(gpus) <= 1:
strategy = None
else:
strategy = "ddp"
if params['train']['early_stopping']:
early_stop_callback = EarlyStopping(monitor="val_loss_epoch",
patience=params['train']['patience'],
mode="min")
callback_funcs = [checkpoint_callback, ModelSummary(max_depth=2), early_stop_callback]
else:
callback_funcs = [checkpoint_callback, ModelSummary(max_depth=2)]
trainer = pl.Trainer(devices=gpus, max_epochs=max_epochs,
gradient_clip_val=params['model']['gradient_clip_val'],
gradient_clip_algorithm=params['model']['gradient_clip_algorithm'],
accelerator="gpu",
callbacks=callback_funcs, logger=wandb_logger,
# profiler='simple',
# fast_dev_run=3,
# log_every_n_steps=1,
precision=params['experiment']['precision'],
strategy=strategy
)
return trainer
def to_number(y_hat, nums=None, thres=None):
if nums is None:
nums = torch.tensor([0, 0.6, 3, 7.5, 12.5, 16]).reshape(1, 6, 1, 1, 1).to(y_hat.device)
num_classes = 6
y_hat = F.softmax(y_hat, dim=1)
if thres is not None:
y_sum = 1 - torch.cumsum(y_hat, dim=1)
y_hat = torch.argmax((y_sum < torch.tensor(thres + [2], device=y_sum.device).reshape(1, 6, 1, 1, 1)).long(),
dim=1)
else:
y_hat = torch.argmax(y_hat, dim=1)
y_hat = F.one_hot(y_hat, num_classes=num_classes).permute(0, 4, 1, 2, 3)
ret = torch.sum(y_hat * nums, axis=1, keepdim=True)
return y_hat, ret
def do_predict(trainer, model, predict_params, test_data):
ret = 0
test_batch = trainer.predict(model, dataloaders=test_data)
scores = torch.cat([b[0] for b in test_batch])
_, scores = to_number(scores)
tensor_to_submission_file(scores, predict_params)
return ret
def do_test(trainer, model, test_data):
scores = trainer.test(model, dataloaders=test_data)
def do_val(trainer, model, test_data):
scores = trainer.validate(model, dataloaders=test_data)
def train(params, gpus, mode, checkpoint_path, model=UNetModel, tune=True):
""" main training/evaluation method
"""
# ------------
# model & data
# ------------
get_cuda_memory_usage(gpus)
data = DataModule(params['dataset'], params['train'], mode)
model = load_model(model, params, checkpoint_path)
# model.summary()
# ------------
# Add your models here
# ------------
# ------------
# trainer
# ------------
trainer = get_trainer(gpus, params, mode)
get_cuda_memory_usage(gpus)
# ------------
# train & final validation
# ------------
ret = None
if mode == 'train':
print("------------------")
print("--- TRAIN MODE ---")
print("------------------")
trainer.fit(model, data)
if mode == "val":
# ------------
# VALIDATE
# ------------
print("---------------------")
print("--- VALIDATE MODE ---")
print("---------------------")
do_val(trainer, model, data.val_dataloader())
if mode == 'predict':
# ------------
# PREDICT
# ------------
print("--------------------")
print("--- PREDICT MODE ---")
print("--------------------")
print("REGIONS!:: ", params["dataset"]["regions"], params["predict"]["region_to_predict"])
if params["predict"]["region_to_predict"] not in params["dataset"]["regions"]:
print(
"EXITING... \"regions\" and \"regions to predict\" must indicate the same region name in your config file.")
else:
model.eval()
ret = do_predict(trainer, model, params["predict"], data.test_dataloader())
get_cuda_memory_usage(gpus)
return ret
def update_params_based_on_args(options):
config_p = os.path.join('models/configurations', options.config_path)
params = load_config(config_p)
if options.name != '':
print(params['experiment']['name'])
params['experiment']['name'] = options.name
# print(params['model'])
return params
def set_parser():
""" set custom parser """
parser = argparse.ArgumentParser(description="")
parser.add_argument("-f", "--config_path", type=str, required=False, default='./configurations/config_basline.yaml',
help="path to config-yaml")
parser.add_argument("-g", "--gpus", type=int, nargs='+', required=False, default=1,
help="specify gpu(s): 1 or 1 5 or 0 1 2 (-1 for no gpu)")
parser.add_argument("-m", "--mode", type=str, required=False, default='train',
help="choose mode: train (default) / val / predict")
parser.add_argument("-c", "--checkpoint", type=str, required=False, default='',
help="init a model from a checkpoint path. '' as default (random weights)")
parser.add_argument("-n", "--name", type=str, required=False, default='',
help="Set the name of the experiment")
parser.add_argument("-a", "--generate_all", action="store_true", required=False, default=False,
help="Set the name of the experiment")
parser.add_argument("--tune", action="store_true", required=False, default=False,
help="Set the name of the experiment")
parser.add_argument("--test_region", type=str, required=False, default=None)
parser.add_argument("--test_year", type=str, required=False, default=None)
parser.add_argument("--test_bz", type=int, required=False, default=None)
return parser
def main():
parser = set_parser()
options = parser.parse_args()
params = update_params_based_on_args(options)
if options.test_region:
params['dataset']['regions'] = [options.test_region]
params['predict']['region_to_predict'] = options.test_region
if options.test_year:
params['dataset']['years'] = [options.test_year]
params['predict']['year_to_predict'] = options.test_year
if options.test_bz:
params['train']['batch_size'] = options.test_bz
if options.generate_all:
print("generate on all the regions and years")
original_regions = copy.deepcopy(params['dataset']['regions'])
original_year = copy.deepcopy(params['dataset']['years'])
cms = []
description = []
for region in original_regions:
for year in original_year:
params['dataset']['regions'] = [region]
params['predict']['region_to_predict'] = region
params['dataset']['years'] = [year]
params['predict']['year_to_predict'] = year
ret = train(params, options.gpus, options.mode, options.checkpoint, options.tune)
description.append([region, year])
cms.append(ret)
for j in range(len(cms)):
ret = cms[j]
print(f"{description[j][0]},{description[j][1]}: ")
csi_list = []
for i in range(ret.size(0)):
recall, precision, F1, acc, csi = recall_precision_f1_acc(cm=ret[i])
csi_list.append(csi)
print(f"csi : {np.mean(csi_list)}")
csi_list = []
for class_cm in torch.sum(torch.stack(cms, dim=0), dim=0):
recall, precision, F1, acc, csi = recall_precision_f1_acc(cm=class_cm)
csi_list.append(csi)
print(f"total csi : {np.mean(csi_list)}")
else:
train(params, options.gpus, options.mode, options.checkpoint, tune=options.tune)
if __name__ == "__main__":
main()
""" examples of usage:
1) train from scratch on one GPU
python train.py --gpus 2 --mode train --config_path config_baseline.yaml --name baseline_train
2) train from scratch on four GPUs
python train.py --gpus 0 1 2 3 --mode train --config_path config_baseline.yaml --name baseline_train
3) fine tune a model from a checkpoint on one GPU
python train.py --gpus 1 --mode train --config_path config_baseline.yaml --checkpoint "lightning_logs/PATH-TO-YOUR-MODEL-LOGS/checkpoints/YOUR-CHECKPOINT-FILENAME.ckpt" --name baseline_tune
4) evaluate a trained model from a checkpoint on two GPUs
python train.py --gpus 0 1 --mode val --config_path config_baseline.yaml --checkpoint "lightning_logs/PATH-TO-YOUR-MODEL-LOGS/checkpoints/YOUR-CHECKPOINT-FILENAME.ckpt" --name baseline_validate
5) generate predictions (plese note that this mode works only for one GPU)
python train.py --gpus 1 --mode predict --config_path config_baseline.yaml --checkpoint "lightning_logs/PATH-TO-YOUR-MODEL-LOGS/checkpoints/YOUR-CHECKPOINT-FILENAME.ckpt"
"""