-
Notifications
You must be signed in to change notification settings - Fork 15
/
decode.ml
172 lines (147 loc) · 5.79 KB
/
decode.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
(***********************************************************************)
(* decode.ml - Handles decoding aspect of set-reconciliation *)
(* algorithm. *)
(* *)
(* Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, *)
(* 2011, 2012, 2013 Yaron Minsky and Contributors *)
(* *)
(* This file is part of SKS. SKS is free software; you can *)
(* redistribute it and/or modify it under the terms of the GNU General *)
(* Public License as published by the Free Software Foundation; either *)
(* version 2 of the License, or (at your option) any later version. *)
(* *)
(* This program is distributed in the hope that it will be useful, but *)
(* WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *)
(* General Public License for more details. *)
(* *)
(* You should have received a copy of the GNU General Public License *)
(* along with this program; if not, write to the Free Software *)
(* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 *)
(* USA or see <http://www.gnu.org/licenses/>. *)
(***********************************************************************)
open ZZp.Infix
open StdLabels
open MoreLabels
module Unix=UnixLabels
open Printf
module ZSet = ZZp.Set
open LinearAlg
open ZZp.Infix
exception Low_mbar
exception Interpolation_failure
(** takes [values], an array of evaluations of an unknown rational function,
evaluated at [points], and [d], the degree difference between the numerator
and the denominator. Returns the numerator,denominator pair describing the
reduced rational function, if such exists.
*)
let interpolate ~values ~points ~d =
if (abs d) > Array.length values
then raise Interpolation_failure;
let mbar = Array.length values in
let mbar =
if (mbar + d) mod 2 <> 0
then mbar - 1 else mbar
in
let ma = (mbar + d) / 2 and mb = (mbar - d) / 2 in
let matrix = Matrix.make ~rows:mbar ~columns:(mbar + 1)
ZZp.zero in
for j = 0 to mbar - 1 do
let accum = ref ZZp.one in
let kj = points.(j) in
let fj = values.(j) in
for i = 0 to ma - 1 do
Matrix.set matrix i j !accum;
accum := ZZp.mul kj !accum
done;
let kjma = !accum in
accum := ZZp.neg fj;
for i = ma to mbar - 1 do
Matrix.set matrix i j !accum;
accum := ZZp.mul kj !accum
done;
let fjkjmb = ZZp.neg !accum in
Matrix.set matrix mbar j (ZZp.sub fjkjmb kjma)
done;
(try reduce matrix
with Failure s -> raise Interpolation_failure);
let acoeffs = Array.init (ma + 1)
~f:(fun j -> if j = ma then ZZp.one
else Matrix.get matrix mbar j)
and bcoeffs = Array.init (mb + 1)
~f:(fun j -> if j = mb then ZZp.one
else Matrix.get matrix mbar (j + ma)) in
let apoly = Poly.of_array acoeffs and bpoly = Poly.of_array bcoeffs in
let g = Poly.gcd apoly bpoly in
(Poly.div apoly g, Poly.div bpoly g)
(*********************************************************************)
(*********************************************************************)
let mult modulus x y = Poly.modulo (Poly.mult x y) modulus
let square modulus x = Poly.modulo (Poly.mult x x) modulus
let powmod ~modulus x n =
let nbits = Number.nbits n in
let rval = ref Poly.one in
let x2n = ref x in
for bit = 0 to nbits do
if Number.nth_bit n bit then
rval := mult modulus !rval !x2n;
x2n := square modulus !x2n
done;
!rval
(************************************************************)
let rand_ZZp () =
let primebits = !ZZp.nbits in
let random = Prime.randbits Random.bits primebits in
ZZp.of_number random
(** Checks preconditions of factorizability. In particular, that the
polynomial is *)
let factor_check x =
if Poly.degree x = 1 || Poly.degree x = 0 then true
else
let z = Poly.of_array [| ZZp.zero; ZZp.one |] in
let zq = powmod ~modulus:x z !ZZp.order in
let mz = Poly.scmult z (ZZp.of_int (-1)) in
let zqmz = Poly.modulo (Poly.add zq mz) x in
Poly.eq zqmz Poly.zero
let gen_splitter f =
let q = ZZp.neg ZZp.one /: ZZp.two in
let a = rand_ZZp () in
let za = Poly.of_array [| a ; ZZp.one |] in
let zaq = powmod ~modulus:f za (ZZp.to_number q) in
let zaqo = Poly.sub zaq Poly.one in
zaqo
let rec rand_split f =
let splitter = gen_splitter f in
let first = Poly.gcd splitter f in
let second = Poly.div f first in
(first,second)
let rec factor f =
let degree = Poly.degree f in
if degree = 1
then ZSet.add (ZZp.neg (Poly.const_coeff f)) ZSet.empty
else if degree = 0
then ZSet.empty
else
let (f1,f2) = rand_split f in
flush stdout;
ZSet.union (factor f1) (factor f2)
let shorten array =
Array.init (Array.length array - 1) ~f:(fun i -> array.(i))
let reconcile ~values ~points ~d =
let len = Array.length points in
let (num,denom) =
try interpolate
~values:(shorten values)
~points:(shorten points) ~d
with Interpolation_failure -> raise Low_mbar
in
let val_from_poly = ZZp.div (Poly.eval num points.(len - 1))
(Poly.eval denom points.(len - 1)) in
if val_from_poly <>: values.(len - 1) ||
not (factor_check num) || not (factor_check denom)
then raise Low_mbar;
let aset = factor num
and bset = factor denom
in (aset,bset)
let array_to_set array =
Array.fold_left ~f:(fun set el -> ZSet.add el set) ~init:ZSet.empty array