-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
356 lines (311 loc) · 14 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
from random import shuffle
import torch
import os
import wandb
import math
import random
import numpy as np
import ujson as json
from tqdm import tqdm
from torch.optim import Adam, Adadelta
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader
from config import get_args
from data_utils import prepro_orig, prepro_vocab, SSDataset, get_ss_collate_fn, get_ss_filter, \
QADataset, get_qa_collate_fn, get_qa_filter, ATDataset, get_at_collate_fn, get_at_filter
from models import QA4IESS, QA4IEQA, QA4IEAT
from optim_utils import *
import squad_utils
def set_seed(config):
seed = config.seed
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
def trainSS(config):
ss_filter = get_ss_filter(config)
train_data = json.load(open(os.path.join(config.data_dir, 'train.json')))
train_data = SSDataset(train_data, ss_filter)
train_loader = DataLoader(train_data, config.batch_size, shuffle=True, collate_fn=get_ss_collate_fn(config))
dev_data = json.load(open(os.path.join(config.data_dir, 'dev.json')))
dev_data = SSDataset(dev_data, ss_filter)
dev_loader = DataLoader(dev_data, config.eval_batch_size, shuffle=False, collate_fn=get_ss_collate_fn(config))
model = QA4IESS(config).to(0)
optimizer = Adam(model.parameters(), lr=config.lr)
num_steps = int(math.ceil(len(train_data) / config.batch_size)) * config.num_epochs
scheduler = LambdaLR(optimizer, lr_lambda=get_warmup_linear_decay(0, num_steps))
step = 0
log_loss = 0
dev_score = 0
for ei in range(config.num_epochs):
for batch in tqdm(train_loader, ncols=100):
optimizer.zero_grad()
loss, logits = model(*batch)
loss.backward()
optimizer.step()
log_loss += float(loss)
step += 1
scheduler.step()
wandb.log({'lr': scheduler.get_last_lr()[0]}, step=step)
if step % config.log_period == 0:
wandb.log({'loss': log_loss / config.log_period}, step=step)
log_loss = 0
if step % config.eval_period == 0:
score, eval_dict = evalSS(model, dev_data, dev_loader)
wandb.log(eval_dict, step=step)
if score > dev_score:
torch.save(model.state_dict(), os.path.join(config.out_dir, 'model.pt'))
dev_score = score
score, eval_dict = evalSS(model, dev_data, dev_loader)
wandb.log(eval_dict, step=step)
if score > dev_score:
torch.save(model.state_dict(), os.path.join(config.out_dir, 'model.pt'))
dev_score = score
def trainQA(config):
qa_filter = get_qa_filter(config)
collate_fn = get_qa_collate_fn(config)
train_data = json.load(open(os.path.join(config.data_dir, 'train.json')))
train_ss = torch.load(os.path.join(config.out_dir, '../SS/train.SS.pt'))
train_data = QADataset(train_data, train_ss, qa_filter)
train_loader = DataLoader(train_data, config.batch_size, shuffle=True, collate_fn=collate_fn)
dev_ss = torch.load(os.path.join(config.out_dir, '../SS/dev.SS.pt'))
dev_data = json.load(open(os.path.join(config.data_dir, 'dev.json')))
dev_data = QADataset(dev_data, dev_ss, qa_filter)
dev_loader = DataLoader(dev_data, config.eval_batch_size, shuffle=False, collate_fn=collate_fn)
model = QA4IEQA(config).to(0)
optimizer = Adam(model.parameters(), lr=config.lr)
num_steps = int(math.ceil(len(train_data) / config.batch_size)) * config.num_epochs
scheduler = LambdaLR(optimizer, lr_lambda=get_warmup_linear_decay(0, num_steps))
step = 0
log_loss = 0
dev_score = -1
for ei in range(config.num_epochs):
for batch in tqdm(train_loader, ncols=100):
optimizer.zero_grad()
cx, cq, x, q, x_masks, q_masks, ys, y_masks, qaids = batch
loss, logits = model(cx, cq, x, q, x_masks, q_masks, ys, y_masks)
loss.backward()
optimizer.step()
log_loss += float(loss)
step += 1
scheduler.step()
wandb.log({'lr': scheduler.get_last_lr()[0]}, step=step)
if step % config.log_period == 0:
wandb.log({'loss': log_loss / config.log_period}, step=step)
log_loss = 0
if step % config.eval_period == 0:
score, eval_dict = evalQA(model, dev_data, dev_loader)
wandb.log(eval_dict, step=step)
if score > dev_score:
torch.save(model.state_dict(), os.path.join(config.out_dir, 'model.pt'))
dev_score = score
score, eval_dict = evalQA(model, dev_data, dev_loader)
wandb.log(eval_dict, step=step)
if score > dev_score:
torch.save(model.state_dict(), os.path.join(config.out_dir, 'model.pt'))
dev_score = score
def trainAT(config):
at_filter = get_at_filter(config)
collate_fn = get_at_collate_fn(config)
train_data = json.load(open(os.path.join(config.data_dir, 'ietrain.json')))
train_ss = torch.load(os.path.join(config.out_dir, '../SS/ietrain.SS.pt'))
train_qa = torch.load(os.path.join(config.out_dir, '../QA/ietrain.QA.pt'))
train_data = ATDataset(train_data, train_ss, train_qa, at_filter)
train_loader = DataLoader(train_data, config.batch_size, shuffle=True, collate_fn=collate_fn)
dev_ss = torch.load(os.path.join(config.out_dir, '../SS/iedev.SS.pt'))
dev_qa = torch.load(os.path.join(config.out_dir, '../QA/iedev.QA.pt'))
dev_data = json.load(open(os.path.join(config.data_dir, 'iedev.json')))
dev_data = ATDataset(dev_data, dev_ss, dev_qa, at_filter)
dev_loader = DataLoader(dev_data, config.eval_batch_size, shuffle=False, collate_fn=collate_fn)
model = QA4IEAT(config).to(0)
optimizer = Adam(model.parameters(), lr=config.lr)
num_steps = int(math.ceil(len(train_data) / config.batch_size)) * config.num_epochs
scheduler = LambdaLR(optimizer, lr_lambda=get_warmup_linear_decay(0, num_steps))
step = 0
log_loss = 0
dev_score = -1
print(evalAT(model, dev_data, dev_loader))
for ei in range(config.num_epochs):
for batch in tqdm(train_loader, ncols=100):
optimizer.zero_grad()
cx, cq, x, q, x_masks, q_masks, scores, ys, qaids = batch
loss, logits = model(cx, cq, x, q, x_masks, q_masks, scores, ys)
loss.backward()
optimizer.step()
log_loss += float(loss)
step += 1
scheduler.step()
wandb.log({'lr': scheduler.get_last_lr()[0]}, step=step)
if step % config.log_period == 0:
wandb.log({'loss': log_loss / config.log_period}, step=step)
log_loss = 0
if step % config.eval_period == 0:
score, eval_dict = evalAT(model, dev_data, dev_loader)
print(eval_dict)
wandb.log(eval_dict, step=step)
if score > dev_score:
torch.save(model.state_dict(), os.path.join(config.out_dir, 'model.pt'))
dev_score = score
score, eval_dict = evalAT(model, dev_data, dev_loader)
wandb.log(eval_dict, step=step)
if score > dev_score:
torch.save(model.state_dict(), os.path.join(config.out_dir, 'model.pt'))
dev_score = score
@torch.no_grad()
def evalSS(model, data, loader):
model.eval()
scores = []
labels = []
ss_dict = {}
for ai, article in enumerate(data.data):
ss_dict[ai] = {}
for qi in range(len(article['qas'])):
ss_dict[ai][qi] = [0.] * len(article['x'])
for batch in tqdm(loader, ncols=100):
logits = model(*(batch[:-1]))
score = logits.sigmoid()
scores.append(score)
labels.append(batch[-1])
scores = torch.cat(scores)
labels = torch.cat(labels)
sorted_scores, sorted_indices = scores.sort(descending=True)
sorted_labels = labels[sorted_indices]
true = sorted_labels.cumsum(dim=0)
positive = torch.arange(len(true)).to(true) + 1
prec = true / positive
rec = true / labels.sum()
f1s = 2 * prec * rec / (prec + rec)
f1s[f1s.isnan()] = 0.
maxf1, maxi = f1s.max(dim=0)
prec, rec = prec[maxi], rec[maxi]
theta = sorted_scores[maxi]
assert len(data.features) == len(scores)
for f, score in zip(data.features, scores):
ai, qi, si = f['ridx']
ss_dict[ai][qi][si] = score.item()
cover, total = 0, 0
for ai, article in enumerate(data.data):
sents_len = [len(sent) for sent in article['x']]
for qi, qa in enumerate(article['qas']):
answers = qa['a']
scores = ss_dict[ai][qi]
sents_indices = np.argsort(scores)[::-1]
selected_indices, sum_len = [], 0
for si in sents_indices:
if sum_len + sents_len[si] <= 400:
selected_indices.append(si)
sum_len += sents_len[si]
else:
break
selected_indices = sorted(selected_indices)
for a in answers:
complete = True
for si, ti in a['y']:
if si not in selected_indices:
complete = False
break
if complete:
cover += 1
break
total += 1
cover_score = float(cover) / total
model.train()
return cover_score, {'cover': cover_score, 'prec': prec, 'rec': rec, 'f1': maxf1, 'theta': theta}
@torch.no_grad()
def evalQA(model, dataset, loader):
model.eval()
output = {}
for batch in tqdm(loader, ncols=100):
cx, cq, x, q, x_masks, q_masks, ys, y_masks, qaids = batch
xlens = x_masks.sum(dim=1).cpu().numpy().tolist()
logits = model(cx, cq, x, q, x_masks, q_masks)
preds = logits.argmax(dim=-1).cpu().numpy().tolist()
for qaid, pred, xlen in zip(qaids, preds, xlens):
end = pred.index(xlen) if xlen in pred else len(pred)
output[qaid] = pred[:end]
for f in dataset.features:
if f['id'] not in output:
continue
sents_indices = f['sents_indices']
ai, qi = f['ridx']
x = [word for si in sents_indices for word in dataset.data[ai]['x'][si]]
pred = output[f['id']]
output[f['id']] = ' '.join([x[i] for i in pred])
em, f1 = squad_utils.evaluate(dataset.data, output)
model.train()
return em, {'em': em, 'f1': f1}
@torch.no_grad()
def evalAT(model, dataset, loader):
model.eval()
scores = []
labels = []
for batch in tqdm(loader, ncols=100):
cx, cq, x, q, x_masks, q_masks, ss_scores, ys, qaids = batch
logits = model(cx, cq, x, q, x_masks, q_masks, ss_scores)
preds = logits.sigmoid()
scores.append(preds)
labels.append(ys)
scores = torch.cat(scores)
labels = torch.cat(labels)
sorted_scores, sorted_indices = scores.sort(descending=True)
sorted_labels = labels[sorted_indices]
true = sorted_labels.cumsum(dim=0)
positive = torch.arange(len(true)).to(true) + 1
prec = true / positive
rec = true / labels.sum()
f1s = 2 * prec * rec / (prec + rec)
f1s[f1s.isnan()] = 0.
maxf1, maxi = f1s.max(dim=0)
prec, rec = prec[maxi], rec[maxi]
theta = sorted_scores[maxi]
model.train()
return maxf1, {'prec': prec * 100., 'rec': rec * 100., 'f1': maxf1 * 100., 'theta': theta}
if __name__ == "__main__":
config = get_args()
set_seed(config)
prepro_orig(config)
prepro_vocab(config)
if config.mode == 'train':
if config.model == 'SS':
wandb.init(project="QA4IE-J", name=f'{config.name}-{config.model}')
# wandb.config.update(config)
trainSS(config)
elif config.model == 'QA':
wandb.init(project="QA4IE-J", name=f'{config.name}-{config.model}')
# wandb.config.update(config)
trainQA(config)
elif config.model == 'AT':
wandb.init(project="QA4IE-J", name=f'{config.name}-{config.model}')
# wandb.config.update(config)
trainAT(config)
elif config.mode == 'test':
if config.model == 'SS':
ss_filter = get_ss_filter(config)
data = json.load(open(os.path.join(config.data_dir, 'test.json')))
data = SSDataset(data, ss_filter)
loader = DataLoader(data, config.eval_batch_size, shuffle=False, collate_fn=get_ss_collate_fn(config))
model = QA4IESS(config).to(0)
model.load_state_dict(torch.load(os.path.join(config.out_dir, 'model.pt')))
print(evalSS(model, data, loader))
elif config.model == 'QA':
qa_filter = get_qa_filter(config)
collate_fn = get_qa_collate_fn(config)
ss = torch.load(os.path.join(config.out_dir, '../SS/test.SS.pt'))
data = json.load(open(os.path.join(config.data_dir, 'test.json')))
data = QADataset(data, ss, qa_filter)
loader = DataLoader(data, config.eval_batch_size, shuffle=False, collate_fn=collate_fn)
model = QA4IEQA(config).to(0)
model.load_state_dict(torch.load(os.path.join(config.out_dir, 'model.pt')))
print(evalQA(model, data, loader))
elif config.model == 'AT':
at_filter = get_at_filter(config)
collate_fn = get_at_collate_fn(config)
ss = torch.load(os.path.join(config.out_dir, '../SS/ietest.SS.pt'))
qa = torch.load(os.path.join(config.out_dir, '../QA/ietest.QA.pt'))
data = json.load(open(os.path.join(config.data_dir, 'ietest.json')))
data = ATDataset(data, ss, qa, at_filter)
loader = DataLoader(data, config.eval_batch_size, shuffle=False, collate_fn=collate_fn)
model = QA4IEAT(config).to(0)
model.load_state_dict(torch.load(os.path.join(config.out_dir, 'model.pt')))
print(evalAT(model, data, loader))