-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathread.py
246 lines (215 loc) · 8.78 KB
/
read.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
"""NOTES:
We created gold
standard data for this problem using a simplified
consolidation approach: if two or more annotators
agreed that a category is present in a segment, then
we labeled that segment with the category
"""
import os
from glob import glob
import pandas as pd
import numpy as np
import json
from tqdm import tqdm
import re
PATH_TO_DATA = "data"
CATEGORY_NAMES = [
"First Party Collection/Use",
"Third Party Sharing/Collection",
"User Choice/Control",
"User Access, Edit and Deletion",
"Data Retention",
"Data Security",
"Policy Change",
"Do Not Track",
"International and Specific Audiences",
# "Other",
]
def do_remove_html_tags(text):
clean = re.compile("<.*?>")
return re.sub(clean, "", text)
def get_df_annotations(dataset_name):
# read all annotation files into single df
header_names = [
"annotation_ID",
"batch_ID",
"annotator_ID",
"policy_ID_other",
"segment_ID",
"category_name",
"attribute_value_pairs",
"date",
"policy_URL",
]
df_annotations = []
for path, subdir, files in os.walk(
os.path.join(PATH_TO_DATA, dataset_name, "annotations")
):
for file_path in glob(os.path.join(path, "*.csv")):
annotation = pd.read_csv(file_path, header=None, names=header_names)
#print(file_path)
annotation["policy_ID"] = os.path.basename(file_path).split("_")[0]
df_annotations.append(annotation)
df_annotations = pd.concat(df_annotations, axis=0, ignore_index=True)
df_annotations["complete_segment_ID"] = (
df_annotations["policy_ID"].astype(str)
+ "_"
+ df_annotations["segment_ID"].astype(str)
)
# make sure data agrees with paper
assert len(df_annotations["annotator_ID"].unique()) == 10
assert len(df_annotations["policy_ID"].unique()) == 115
assert all(df_annotations.groupby("policy_ID")["annotator_ID"].nunique() == 3)
assert len(df_annotations) == 23194
#print(df_annotations)
return df_annotations
def get_df_segments(dataset_name, n_policies=None, remove_html_tags=False):
# read all sanatized html files and obtain df with policy_ID, segment_ID and the sentences
list_of_df_dicts = []
for path, subdir, files in os.walk(
os.path.join(PATH_TO_DATA, dataset_name, "sanitized_policies")
):
for ind, file_path in enumerate(glob(os.path.join(path, "*.html"))):
if n_policies is not None and ind == n_policies:
break
policy_ID = os.path.basename(file_path).split("_")[0]
file_contents = open(file_path, "r")
segments = file_contents.read().split("|||")
for ind, segment in enumerate(segments):
if remove_html_tags:
segment = do_remove_html_tags(segment)
list_of_df_dicts.append(
{
"policy_ID": int(policy_ID),
"segment_ID": ind,
"segment_text": segment,
}
)
df_segments = pd.DataFrame.from_dict(list_of_df_dicts)
df_segments["complete_segment_ID"] = (
df_segments["policy_ID"].astype(str)
+ "_"
+ df_segments["segment_ID"].astype(str)
)
return df_segments
def get_df_segments_with_gt(dataset_name, df_annotations, remove_html_tags=False):
# obtain df_segments with groundtruth
print("Get dataframe with segments text and ground truth...")
df_segments = get_df_segments(dataset_name, remove_html_tags=remove_html_tags)
print(df_segments)
tqdm.pandas()
df_segments["gt"] = df_segments["complete_segment_ID"].progress_apply(
get_ground_truth, args=(df_annotations,)
)
df_segments = df_segments.join(df_segments["gt"].str.join("|").str.get_dummies())
#print(df_segments)
return df_segments
def get_df_segments_for_all_annotators(
dataset_name, df_annotations, remove_html_tags=False
):
# obtain df_segments with groundtruth
print("Get list of dataframes for each annotator with segments and ground truth...")
df_segments = get_df_segments(dataset_name, remove_html_tags=remove_html_tags)
tqdm.pandas()
annotator_ids = df_annotations["annotator_ID"].unique()
list_df_segments_annotators = []
for annotator_id in tqdm(annotator_ids):
df_annotations_for_single_annotator = df_annotations.loc[
df_annotations["annotator_ID"] == annotator_id
]
df_segments_for_single_annotator = df_segments.loc[
df_segments["complete_segment_ID"].isin(
df_annotations_for_single_annotator["complete_segment_ID"]
)
]
df_segments_for_single_annotator["gt"] = df_segments[
"complete_segment_ID"
].progress_apply(
get_ground_truth, args=(df_annotations_for_single_annotator, 1)
)
df_segments_for_single_annotator = df_segments_for_single_annotator.join(
df_segments_for_single_annotator["gt"].str.join("|").str.get_dummies()
)
list_df_segments_annotators.append(df_segments_for_single_annotator)
return list_df_segments_annotators
def get_df_results(file_path, return_dummies = True):
# obtain df_segments with pred
print("Get dataframe with results...")
df_results = pd.read_excel(file_path)
#print(df_results)
tqdm.pandas()
df_results["pred"] = df_results["llm_response"].progress_apply(detect_categories)
#print(df_results)
if return_dummies:
df_results = df_results.join(df_results["pred"].str.join("|").str.get_dummies())
#print(df_results)
return df_results
def detect_categories(llm_response_value):
pred = []
roman_options = ["i", "ii", "iii", "iv", "v", "vi", "vii", "viii", "ix"]
alpha_options = ["a", "b", "c", "d", "e", "f", "g", "h", "i"]
if not isinstance(llm_response_value, str):
return pred
if llm_response_value.isspace():
return pred
# if len(llm_response_value) == 1:
if llm_response_value.isdigit():
llm_response_value = CATEGORY_NAMES[int(llm_response_value) - 1]
elif llm_response_value.lower() in alpha_options:
llm_response_value = CATEGORY_NAMES[
alpha_options.index(llm_response_value.lower())
]
elif llm_response_value.lower() in roman_options:
llm_response_value = CATEGORY_NAMES[
roman_options.index(llm_response_value.lower())
]
for category in CATEGORY_NAMES:
if category == "International and Specific Audiences":
cats_to_check = ["International", "Specific", "child"]
elif category == "User Access, Edit and Deletion":
cats_to_check = ["Access"]
elif category == "User Choice/Control":
cats_to_check = ["Choice"]
elif category == "First Party Collection/Use":
cats_to_check = ["st Party", "First-Party"]
elif category == "Third Party Sharing/Collection":
cats_to_check = ["rd Party", "Third-Party"]
elif category == "Data Retention":
cats_to_check = ["retention"]
elif category == "Data Security":
cats_to_check = ["security"]
else:
cats_to_check = [category]
for cat_to_check in cats_to_check:
if cat_to_check.lower() in llm_response_value.lower():
pred.append(category)
break
#if len(pred) > 1:
#print(pred)
#print(llm_response_value)
#print('--------------------------------------------------------------------------------')
return pred
def get_ground_truth(complete_segment_ID_value, df_annotations, min_occurence=2, column_name="category_name"):
annotations = df_annotations.loc[
df_annotations["complete_segment_ID"] == complete_segment_ID_value
]
annotations = annotations[["annotator_ID", column_name]].drop_duplicates()
annotations = annotations[column_name].value_counts()[
annotations[column_name].value_counts() >= min_occurence
]
#print(annotations.to_list())
#print('------------------')
return annotations.index.to_list()
if __name__ == "__main__":
# obtain dfs
df_annotations = get_df_annotations("OPP-115")
list_df_segments = get_df_segments_for_all_annotators(
"OPP-115", df_annotations, remove_html_tags=True
)
df_segments = get_df_segments("OPP-115", remove_html_tags=True)
df_segments_with_gt = get_df_segments_with_gt("OPP-115", df_annotations)
df_results = get_df_results("results/OPP-115/gpt-4/Va/complete/20240422_103113/results.xlsx")
# merge dfs to obtain one df with both tags and sentences
df = df_annotations.merge(df_segments, how="left", on="complete_segment_ID")
# interpret results
print(df)