-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathforecast_electricity_consumption.py
256 lines (221 loc) · 8.88 KB
/
forecast_electricity_consumption.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import matplotlib
import matplotlib.pyplot as plt
from argparse import ArgumentParser
from invisibleroads_macros.disk import make_enumerated_folder_for, make_folder
from invisibleroads_macros.log import format_summary
from infrastructure_planning.exceptions import InvalidData
from infrastructure_planning.growth.interpolated import (
get_interpolated_spline_extrapolated_linear_function)
from os.path import join
from pandas import DataFrame, isnull, read_csv
from six import string_types
from StringIO import StringIO
matplotlib.use('Agg')
DATASETS_FOLDER = 'datasets'
POPULATION_BY_YEAR_BY_COUNTRY_TABLE = read_csv(join(
DATASETS_FOLDER, 'world-population-by-year-by-country.csv',
), encoding='utf-8')
ELECTRICITY_CONSUMPTION_PER_CAPITA_BY_YEAR_TABLE = read_csv(join(
DATASETS_FOLDER, 'world-electricity-consumption-per-capita-by-year.csv',
), encoding='utf-8', skiprows=3)
COUNTRY_REGION_INCOME_TABLE = read_csv(StringIO(open(join(
DATASETS_FOLDER, 'world-country-region-income.csv',
), 'r').read().decode('utf-8-sig')), encoding='utf-8')
COUNTRY_NAMES = []
ALTERNATE_COUNTRY_NAME_BY_COUNTRY_NAME = {}
def run(target_folder, target_year):
d = []
t = get_population_electricity_consumption_table(target_year)
t_path = join(target_folder, 'electricity-consumption-by-population.csv')
t.to_csv(t_path, encoding='utf-8', index=False)
d.append(('electricity_consumption_by_population_table_path', t_path))
# World
d.extend(make_plots(target_folder, target_year, 'world', t))
# Region
for region_name, table in t.groupby('Region Name'):
d.extend(make_plots(
target_folder, target_year,
_format_label_for_region(region_name), table))
# Income
for income_group_name, table in t.groupby('Income Group Name'):
d.extend(make_plots(
target_folder, target_year,
_format_label_for_income_group(income_group_name), table))
return d
def get_population_electricity_consumption_table(target_year):
population_electricity_consumption_packs = []
for country_name in yield_country_name():
try:
population = estimate_population(target_year, country_name)
electricity_consumption_per_capita = \
estimate_electricity_consumption_per_capita(
target_year, country_name)
except InvalidData as e:
print('skipping %s: %s' % (country_name.encode('utf-8'), e))
continue
electricity_consumption = \
electricity_consumption_per_capita * population
population_electricity_consumption_packs.append((
country_name,
get_region_name_for(country_name),
get_income_group_name_for(country_name),
target_year,
population,
electricity_consumption_per_capita,
electricity_consumption))
return DataFrame(population_electricity_consumption_packs, columns=[
'Country Name',
'Region Name',
'Income Group Name',
'Year',
'Population',
'Electricity Consumption Per Capita (kWh)',
'Electricity Consumption (kWh)',
])
def make_plots(target_folder, target_year, label, table):
return [
_plot_against_population(
target_folder, target_year, label, table,
'electricity_consumption',
'Electricity Consumption (kWh)'),
_plot_against_population(
target_folder, target_year, label, table,
'electricity_consumption_per_capita',
'Electricity Consumption Per Capita (kWh)'),
]
def yield_country_name():
if not COUNTRY_NAMES:
_prepare_country_names()
return iter(COUNTRY_NAMES)
def estimate_population(target_year, country_name):
t = POPULATION_BY_YEAR_BY_COUNTRY_TABLE
country_t = _get_country_table(t, 'Country or Area', country_name)
try:
earliest_estimated_year = min(country_t[
country_t['Variant'] == 'Low variant']['Year(s)'])
except ValueError:
raise InvalidData('missing population')
# Get actual population for each year
year_packs = country_t[country_t['Year(s)'] < earliest_estimated_year][[
'Year(s)', 'Value']].values
# Estimate population for the given year
estimate_population = get_interpolated_spline_extrapolated_linear_function(
year_packs)
return estimate_population(target_year)
def estimate_electricity_consumption_per_capita(target_year, country_name):
t = ELECTRICITY_CONSUMPTION_PER_CAPITA_BY_YEAR_TABLE
country_t = _get_country_table(t, 'Country Name', country_name)
if not len(country_t):
raise InvalidData('missing country_name')
year_packs = []
for column_name in country_t.columns:
try:
year = int(column_name)
except ValueError:
continue
value = country_t[column_name].values[0]
if isnull(value):
continue
year_packs.append((year, value))
if not year_packs:
raise InvalidData('missing year_value')
estimate_electricity_consumption_per_capita = \
get_interpolated_spline_extrapolated_linear_function(year_packs)
return estimate_electricity_consumption_per_capita(target_year)
def get_region_name_for(country_name):
t = COUNTRY_REGION_INCOME_TABLE
country_t = _get_country_table(t, 'Country Name', country_name)
return country_t['Region'].values[0]
def get_income_group_name_for(country_name):
t = COUNTRY_REGION_INCOME_TABLE
country_t = _get_country_table(t, 'Country Name', country_name)
return country_t['IncomeGroup'].values[0]
def _plot_against_population(
target_folder, target_year, label, table, prefix, column):
variable_nickname = ('%s-for-%s' % (prefix, label)).replace('_', '-')
variable_name = variable_nickname.replace('-', '_') + '_image_path'
target_path = join(target_folder, variable_nickname + '.jpg')
xs = table['Population'].values
ys = table[column].values
zs = table['Country Name']
figure = plt.figure()
ax = figure.add_subplot(111)
ax.scatter(xs, ys)
ax.set_xlabel('Population')
ax.set_ylabel(column)
ax.set_xlim(left=0)
ax.set_ylim(bottom=0)
ax.set_title(_get_plot_title(label) + ' in %s' % target_year)
for index, country_name in enumerate(zs):
ax.annotate(country_name, (xs[index], ys[index]))
figure.savefig(target_path)
plt.close(figure)
return variable_name, target_path
def _get_plot_title(x):
x = x.replace('region', 'Region:')
x = x.replace('income', 'Income Group:')
x = x.replace('-', ' ')
x = x.title()
x = x.replace('Non Oecd', 'non-OECD')
x = x.replace('Oecd', 'OECD')
x = x.replace('And', 'and')
return x
def _prepare_country_names():
global COUNTRY_NAMES
global ALTERNATE_COUNTRY_NAME_BY_COUNTRY_NAME
country_name_table = read_csv(join(
DATASETS_FOLDER, 'world-country-name.csv',
), encoding='utf-8', header=None)
for index, row in country_name_table.iterrows():
country_name = row[0]
COUNTRY_NAMES.append(country_name)
for alternate_country_name in row[1:]:
if not isinstance(alternate_country_name, string_types):
continue
ALTERNATE_COUNTRY_NAME_BY_COUNTRY_NAME[
country_name] = alternate_country_name
ALTERNATE_COUNTRY_NAME_BY_COUNTRY_NAME[
alternate_country_name] = country_name
country_name = alternate_country_name
def _get_country_table(table, column_name, country_name):
country_t = DataFrame()
country_names = []
while not len(country_t):
country_t = table[table[column_name] == country_name]
country_names.append(country_name)
try:
country_name = _get_alternate_country_name(country_name)
except KeyError:
break
if country_name in country_names:
break
return country_t
def _get_alternate_country_name(country_name):
if not ALTERNATE_COUNTRY_NAME_BY_COUNTRY_NAME:
_prepare_country_names()
return ALTERNATE_COUNTRY_NAME_BY_COUNTRY_NAME[country_name]
def _format_label_for_region(region_name):
x = region_name.lower()
x = x.replace(' ', '-')
x = x.replace('&', 'and')
return 'region-%s' % x
def _format_label_for_income_group(income_group_name):
x = income_group_name.lower()
x = x.replace(' ', '-')
x = x.replace(':', '')
x = x.replace('non', 'non-')
x = x.replace('-income', '')
return 'income-group-%s' % x
if __name__ == '__main__':
argument_parser = ArgumentParser()
argument_parser.add_argument(
'--target_folder',
metavar='FOLDER', type=make_folder)
argument_parser.add_argument(
'--target_year',
metavar='YEAR', type=int, required=True)
args = argument_parser.parse_args()
d = run(
args.target_folder or make_enumerated_folder_for(__file__),
args.target_year)
print(format_summary(d))