-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
84 lines (58 loc) · 2.67 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import time, os, yaml, argparse
from spectral_unmixing import *
from dataloader import *
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import confusion_matrix
from plotting import *
from chirps_processing import *
# Load in parameters from params.yaml
def get_args():
parser = argparse.ArgumentParser(
description= 'Predict irrigation presence from abundance maps')
parser.add_argument('--training_params_filename',
type=str,
default='params.yaml',
help='Filename defining model configuration')
args = parser.parse_args()
config = yaml.load(open(args.training_params_filename))
for k, v in config.items():
args.__dict__[k] = v
return args
if __name__ == '__main__':
args = get_args()
# Cluster rainfall timeseries and create rainfall region shapefiles
if args.rainfall_cluster:
cluster_rainfall(args)
# Plot rainfall region timeseries and shapefiles
if args.rainfall_cluster_plotting:
rainfall_region_plotting(args)
# Endmember extraction and abundance map creation
if args.spectral_unmixing:
print('Load EVI Image')
# Load image
img_src = rasterio.open(os.path.join(args.base_dir, 'imagery', 'modis',
args.evi_img_filename.format(args.unmixing_region)))
print('Loading Endmembers')
endmember_array = return_endmembers(args, img_src)
if args.plotting_endmembers:
plot_endmembers(args, endmember_array)
if args.calc_new_abundance_map:
print('Calculating and Saving Abundance Map')
spectral_unmixing_main(args, img_src, endmember_array, args.unmixing_method)
if args.irrig_prediction:
print('Predicting Irrigation')
dataloader = DataGenerator(args)
print('Loading Data')
X_train, X_val, y_train, y_val = dataloader.return_data()
# Create classifier
forest = RandomForestClassifier(n_estimators=100, random_state=0, max_depth=2, verbose=True,
n_jobs=3, class_weight='balanced')
print('Fit classifier')
forest.fit(X_train, y_train)
print('Importance of features for prediction: {}'.format(forest.feature_importances_))
print("Accuracy on training set: {:.3f}".format(forest.score(X_train, y_train)))
print("Accuracy on validation set: {:.3f}".format(forest.score(X_val, y_val)))
y_val_predicts = forest.predict(X_val)
cf_matrix_val = confusion_matrix(y_val, y_val_predicts)
print("Confusion matrix for validation set")
print(cf_matrix_val)