forked from onnx/onnx-tensorrt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathModelImporter.cpp
790 lines (722 loc) · 32.9 KB
/
ModelImporter.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
/*
* SPDX-License-Identifier: Apache-2.0
*/
#include "ModelImporter.hpp"
#include "OnnxAttrs.hpp"
#include "onnx2trt_utils.hpp"
#include "onnx_utils.hpp"
#include "toposort.hpp"
#include <google/protobuf/io/coded_stream.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <google/protobuf/text_format.h>
#include <limits>
#include <functional>
#include <unordered_set>
namespace onnx2trt
{
// Helper for deserializing INetwork
Status setTensorLocations(
IImporterContext* ctx, const std::vector<std::string>& tensors, const std::vector<std::string>& locations)
{
ASSERT( (tensors.size() >= locations.size()) && "The size of tensors misaligns with the size of the attribute trt_outputs_loc.", nvonnxparser::ErrorCode::kINVALID_GRAPH);
for (size_t i = 0; i < locations.size(); ++i)
{
std::string tensor = tensors.at(i);
std::string location = locations.at(i);
nvinfer1::TensorLocation loc
= location == "device" ? nvinfer1::TensorLocation::kDEVICE : nvinfer1::TensorLocation::kHOST;
if (ctx->tensorLocations().count(tensor) > 0)
{
ASSERT( (ctx->tensorLocations()[tensor] == loc) && "The tensor location cannot be changed.", nvonnxparser::ErrorCode::kINVALID_GRAPH);
}
else
{
ctx->tensorLocations()[tensor] = loc;
}
}
return Status::success();
}
// Helper for deserializing INetwork
template <typename T>
Status setStringMap(
IImporterContext* ctx, const std::vector<std::string>& tensors, const std::vector<T>& data, string_map<T>& map)
{
ASSERT( (tensors.size() >= data.size()) && "The size of tensors misaligns with the size of the attribute trt_outputs_range_min/max.", nvonnxparser::ErrorCode::kINVALID_GRAPH);
for (size_t i = 0; i < data.size(); ++i)
{
std::string name = tensors.at(i);
T dataName = data.at(i);
if (map.count(name) > 0)
{
ASSERT( (map[name] == dataName) && "The order of tensorRangeMin/Max in context misaligns with the order of the attribute trt_outputs_range_min/max.", nvonnxparser::ErrorCode::kINVALID_GRAPH);
}
else
{
map[name] = dataName;
}
}
return Status::success();
}
//! Make error explanation from TensorRT error recorder.
static std::string makeErrorExplanation(IImporterContext* ctx, const std::string& nodeName)
{
std::ostringstream result;
result << "Invalid Node - " << nodeName;
if (auto* errorRecorder = ctx->getErrorRecorder())
{
// Append information that might help the user understand the error.
const int32_t nbErrors = errorRecorder->getNbErrors();
for (int32_t i = 0; i < nbErrors; ++i)
{
result << "\n" << errorRecorder->getErrorDesc(i);
}
}
return result.str();
}
//! Make error explanation from an exception.
static std::string makeErrorExplanation(const std::exception& e, const std::string& nodeName)
{
std::ostringstream result;
result << "Invalid Node - " << nodeName << "\n" << e.what();
return result.str();
}
Status parseGraph(IImporterContext* ctx, const ::ONNX_NAMESPACE::GraphProto& graph, bool deserializingINetwork, int* currentNode)
{
// Import initializers.
for (const ::ONNX_NAMESPACE::TensorProto& initializer : graph.initializer())
{
LOG_VERBOSE("Importing initializer: " << initializer.name());
ShapedWeights weights;
ASSERT(convertOnnxWeights(initializer, &weights, ctx) && "Failed to import initializer.", ErrorCode::kUNSUPPORTED_NODE);
ctx->registerTensor(TensorOrWeights{std::move(weights)}, initializer.name());
}
std::vector<size_t> topoOrder;
ASSERT(toposort(graph.node(), &topoOrder) && "Failed to sort the model topologically.", ErrorCode::kINVALID_GRAPH);
const string_map<NodeImporter>& opImporters = getBuiltinOpImporterMap();
for (const auto& nodeIndex : topoOrder)
{
if (currentNode)
{
*currentNode = nodeIndex;
}
const auto& node = graph.node(nodeIndex);
const std::string& nodeName = getNodeName(node);
LOG_VERBOSE("Parsing node: " << nodeName << " [" << node.op_type() << "]");
// Assemble node inputs. These may come from outside the subgraph.
std::vector<TensorOrWeights> nodeInputs;
std::ostringstream ssInputs{};
ssInputs << nodeName << " [" << node.op_type() << "] inputs: ";
for (const auto& inputName : node.input())
{
// Empty input names indicate optional inputs which have not been supplied.
if (inputName.empty())
{
nodeInputs.emplace_back(nullptr);
ssInputs << "[optional input, not set], ";
}
else
{
LOG_VERBOSE("Searching for input: " << inputName);
ASSERT( (ctx->tensors().count(inputName)) && "Node input was not registered.", ErrorCode::kINVALID_GRAPH);
nodeInputs.push_back(ctx->tensors().at(inputName));
ssInputs << "[" << inputName << " -> " << nodeInputs.back().shape() << "[" << nodeInputs.back().getType() << "]" <<"], ";
}
}
LOG_VERBOSE(ssInputs.str());
// Dispatch to appropriate converter.
const NodeImporter* importFunc{nullptr};
if (opImporters.count(node.op_type()))
{
importFunc = &opImporters.at(node.op_type());
}
else
{
LOG_INFO("No importer registered for op: " << node.op_type() << ". Attempting to import as plugin.");
importFunc = &opImporters.at("FallbackPluginImporter");
}
std::vector<TensorOrWeights> outputs;
try
{
GET_VALUE((*importFunc)(ctx, node, nodeInputs), &outputs);
}
catch (const std::exception& e)
{
return MAKE_ERROR(makeErrorExplanation(e, nodeName), ErrorCode::kINVALID_NODE);
}
if (ctx->hasError())
{
return MAKE_ERROR(makeErrorExplanation(ctx, nodeName), ErrorCode::kINVALID_NODE);
}
for (const auto& output : outputs)
{
if (output.is_tensor())
{
// check that we can resolve output dims
// in the future we may have a network/layer.validate() which will help with that as well
output.tensor().getDimensions();
if (ctx->hasError())
{
return MAKE_ERROR(makeErrorExplanation(ctx, nodeName), ErrorCode::kINVALID_NODE);
}
}
}
if (deserializingINetwork)
{
OnnxAttrs attrs(node, ctx);
// Tensor locations, dynamic ranges and layer precisions will be set after parsing the network
std::vector<std::string> outputsLocation = attrs.get<std::vector<std::string>>("trt_outputs_loc", {});
std::vector<std::string> outputsVec(node.output().begin(), node.output().end());
std::vector<std::string> layerName{nodeName};
CHECK(setTensorLocations(ctx, outputsVec, outputsLocation));
auto outputsRangeMin = attrs.get<std::vector<float>>("trt_outputs_range_min", {});
CHECK(setStringMap<float>(ctx, outputsVec, outputsRangeMin, ctx->tensorRangeMins()));
auto outputsRangeMax = attrs.get<std::vector<float>>("trt_outputs_range_max", {});
CHECK(setStringMap<float>(ctx, outputsVec, outputsRangeMax, ctx->tensorRangeMaxes()));
if (attrs.count("trt_layer_precision"))
{
std::vector<nvinfer1::DataType> layerPrecision{attrs.get<nvinfer1::DataType>("trt_layer_precision")};
CHECK(setStringMap<nvinfer1::DataType>(ctx, layerName, layerPrecision, ctx->layerPrecisions()));
}
}
// Set output names and register outputs with the context.
std::ostringstream ssOutputs{};
ssOutputs << nodeName << " [" << node.op_type() << "] outputs: ";
for (int i = 0; i < node.output().size(); ++i)
{
const auto& outputName = node.output(i);
auto& output = outputs.at(i);
ssOutputs << "[" << outputName << " -> " << output.shape() << "[" << output.getType() << "]" << "], ";
// Note: This condition is to allow ONNX outputs to be ignored
// Always register output weights (even empty ones) as it may be mapped to an unused input
if ((output || output.is_weights()) && !outputName.empty())
{
ctx->registerTensor(std::move(output), outputName);
}
}
LOG_VERBOSE(ssOutputs.str());
}
return Status::success();
}
Status importInput(ImporterContext* ctx, ::ONNX_NAMESPACE::ValueInfoProto const& input, nvinfer1::ITensor** tensor,
std::vector<NamedDimension>& namedDims)
{
auto const& onnxDtype = input.type().tensor_type();
nvinfer1::DataType trtDtype;
ASSERT_INPUT(convertDtype(onnxDtype.elem_type(), &trtDtype) && "Failed to convert ONNX date type to TensorRT data type.", ErrorCode::kUNSUPPORTED_NODE, input.name());
nvinfer1::Dims trt_dims;
size_t const oldNbNamedDimensions = namedDims.size();
ASSERT_INPUT(convertOnnxDims(onnxDtype.shape().dim(), trt_dims, namedDims) && "Failed to convert ONNX dimensions to TensorRT dimensions.", ErrorCode::kUNSUPPORTED_GRAPH, input.name());
nvinfer1::ITensor* userInput = ctx->getUserInput(input.name().c_str());
if (userInput)
{
ASSERT_INPUT(userInput && "User input is missing.", ErrorCode::kINVALID_VALUE, input.name());
// Intentionally don't check dimensions/dtype here so that users can change the input shape/type if
// they want to. However, equalities implied by dimension names are nonetheless respected.
*tensor = userInput;
}
else
{
LOG_VERBOSE(
"Adding network input: " << input.name() << " with dtype: " << trtDtype << ", dimensions: " << trt_dims);
ASSERT_INPUT( (*tensor = ctx->network()->addInput(input.name().c_str(), trtDtype, trt_dims)) && "Failed to add input to the network.",
ErrorCode::kUNSUPPORTED_NODE, input.name());
}
// Fill in field `tensor` for any dimensions that had names in the ONNX.
for (auto i = oldNbNamedDimensions; i < namedDims.size(); ++i)
{
namedDims[i].tensor = *tensor;
}
return Status::success();
}
//! Add equality assertions for dimensions with the same name.
static Status assertDimsWithSameNameAreEqual(ImporterContext* ctx, std::vector<NamedDimension>& namedDims)
{
// Cache for IShapeLayer
std::unordered_map<nvinfer1::ITensor const*, nvinfer1::IShapeLayer*> shapeMap;
// Sort records by name of dimension, using stable_sort for reproducibility.
std::stable_sort(namedDims.begin(), namedDims.end(),
[](const NamedDimension& x, const NamedDimension& y) { return x.dimParam < y.dimParam; });
// Each loop iteration covers a sequence of named dimensions with the same name.
// For each sequence, add IAssertionLayers that assert that the values are equal.
// TensorRT knows about transitive closure of equality, so just add the assertions
// for adjacent records.
decltype(namedDims.begin()) j;
for (auto i = namedDims.begin(); i < namedDims.end(); i = j)
{
// Walk j forward so that [i,j) is indices of named dimensions with the same name.
j = i;
do
{
++j;
} while (j != namedDims.end() && j->dimParam == i->dimParam);
if (j - i < 2)
{
// Single occurrence of name is uninteresting.
continue;
}
std::ostringstream message;
message << "input dimensions named " << i->tensor->getName() << " must be equal";
// prev is the current end of the daisy chain.
nvinfer1::ITensor* prev = nullptr;
for (auto k = i; k < j; ++k)
{
// Create ITensor "next" with dimension length for record k.
auto& shape = shapeMap[k->tensor];
if (shape == nullptr)
{
shape = ctx->network()->addShape(*k->tensor);
}
auto* slice = ctx->network()->addSlice(*shape->getOutput(0), {1, {k->index}}, {1, {1}}, {1, {1}});
nvinfer1::ITensor* next = slice->getOutput(0);
if (prev)
{
// Add a link to the chain.
auto* equal = ctx->network()->addElementWise(*prev, *next, nvinfer1::ElementWiseOperation::kEQUAL);
auto* assertion = ctx->network()->addAssertion(*equal->getOutput(0), message.str().c_str());
ASSERT(assertion != nullptr && "addAssertion failed", ErrorCode::kMODEL_DESERIALIZE_FAILED);
}
prev = next;
}
}
return Status::success();
}
Status importInputs(ImporterContext* ctx, ::ONNX_NAMESPACE::GraphProto const& graph,
string_map<TensorOrWeights>* tensors)
{
// The weights come from the Initializer list in onnx graph
// Initializers are not really network inputs, so they need to be excluded.
std::unordered_set<std::string> initializers{};
for (const ::ONNX_NAMESPACE::TensorProto& initializer : graph.initializer())
{
initializers.emplace(initializer.name());
}
std::vector<NamedDimension> namedDims;
for (const ::ONNX_NAMESPACE::ValueInfoProto& input : graph.input())
{
TensorOrWeights tensor;
if (!initializers.count(input.name()))
{
nvinfer1::ITensor* tensor_ptr{nullptr};
CHECK(importInput(ctx, input, &tensor_ptr, namedDims));
tensor = tensor_ptr;
}
ctx->registerTensor(std::move(tensor), input.name());
}
return assertDimsWithSameNameAreEqual(ctx, namedDims);
}
Status deserialize_onnx_model(void const* serialized_onnx_model, size_t serialized_onnx_model_size,
bool is_serialized_as_text, ::ONNX_NAMESPACE::ModelProto* model)
{
google::protobuf::io::ArrayInputStream raw_input(serialized_onnx_model, serialized_onnx_model_size);
if (is_serialized_as_text)
{
ASSERT( (google::protobuf::TextFormat::Parse(&raw_input, model)) && "Failed to parse the ONNX model.", ErrorCode::kMODEL_DESERIALIZE_FAILED);
}
else
{
google::protobuf::io::CodedInputStream coded_input(&raw_input);
// Note: This WARs the very low default size limit (64MB)
coded_input.SetTotalBytesLimit(std::numeric_limits<int>::max(), std::numeric_limits<int>::max() / 4);
ASSERT( (model->ParseFromCodedStream(&coded_input)) && "Failed to parse the ONNX model.", ErrorCode::kMODEL_DESERIALIZE_FAILED);
}
return Status::success();
}
Status deserialize_onnx_model(int fd, bool is_serialized_as_text, ::ONNX_NAMESPACE::ModelProto* model)
{
google::protobuf::io::FileInputStream raw_input(fd);
if (is_serialized_as_text)
{
ASSERT( (google::protobuf::TextFormat::Parse(&raw_input, model)) && "Failed to parse the ONNX model.", ErrorCode::kMODEL_DESERIALIZE_FAILED);
}
else
{
google::protobuf::io::CodedInputStream coded_input(&raw_input);
// Note: This WARs the very low default size limit (64MB)
coded_input.SetTotalBytesLimit(std::numeric_limits<int>::max(), std::numeric_limits<int>::max() / 4);
ASSERT( (model->ParseFromCodedStream(&coded_input)) && "Failed to parse the ONNX model.", ErrorCode::kMODEL_DESERIALIZE_FAILED);
}
return Status::success();
}
bool ModelImporter::supportsModel(
void const* serialized_onnx_model, size_t serialized_onnx_model_size, SubGraphCollection_t& sub_graph_collection,
const char* model_path)
{
::ONNX_NAMESPACE::ModelProto model;
bool is_serialized_as_text = false;
Status status
= deserialize_onnx_model(serialized_onnx_model, serialized_onnx_model_size, is_serialized_as_text, &model);
if (status.is_error())
{
_errors.push_back(status);
return false;
}
if (model_path)
{
_importer_ctx.setOnnxFileLocation(model_path);
}
bool allSupported{true};
// Parse the graph and see if we hit any parsing errors
allSupported = parse(serialized_onnx_model, serialized_onnx_model_size);
int error_node = -1;
std::string input_node{};
if (!allSupported)
{
int nerror = getNbErrors();
for (int i = 0; i < nerror; ++i)
{
nvonnxparser::IParserError const* error = getError(i);
if (error->node() != -1)
{
error_node = error->node();
allSupported = false;
}
// The node that we failed on is one of the input nodes (-1). Get the name of the input node
// that we failed on and remove all nodes that spawn out of it.
else
{
// Node name is extracted through error->file as all errors thrown on input nodes are wrapped
// around MAKE_INPUT_ERROR.
input_node = error->file();
}
}
}
auto* ctx = &_importer_ctx;
auto checkForInput = [&input_node, &ctx](::ONNX_NAMESPACE::NodeProto const& node) {
for (auto input : node.input())
{
if (input_node == input || ctx->loopTensors()[input_node] == input)
{
return true;
}
}
return false;
};
bool newSubGraph(true);
// Sort and partition supported subgraphs
std::vector<size_t> topological_order;
if (!toposort(model.graph().node(), &topological_order))
{
LOG_VERBOSE("Failed to sort model topologically, exiting ...");
return false;
}
for (int node_idx : topological_order)
{
::ONNX_NAMESPACE::NodeProto const& node = model.graph().node(node_idx);
// Add the node to the subgraph if:
// 1. There is an importer function registered for the operator type
// 2. It is not directly connected to an unsupported input
// 3. It did not illegally produce a shape tensor output
// 4. The importer function did not throw an assertion
bool registered = supportsOperator(node.op_type().c_str());
bool unsupportedInput = (input_node.empty()) ? false : checkForInput(node);
bool unsupportedShapeTensor = ctx->unsupportedShapeTensors().count(node.name()) > 0 ? true : false;
bool unsuccessfulParse = node_idx == error_node;
if (registered && !unsupportedInput && !unsupportedShapeTensor && !unsuccessfulParse)
{
if (newSubGraph)
{
// If it is the beginning of a new subGraph, we start a new vector
sub_graph_collection.emplace_back();
// Mark all new graphs as "unknown"
sub_graph_collection.back().second = false;
newSubGraph = false;
}
// We add the new node to the last graph
sub_graph_collection.back().first.emplace_back(node_idx);
}
else
{
// This is not a supported node, reset newSubGraph
newSubGraph = true;
allSupported = false;
}
}
// Only mark the subgraph as supported if there is one supported subgraph.
if (allSupported)
{
sub_graph_collection.back().second = true;
}
return allSupported;
}
// Mark experimental ops as unsupported, mark plugin ops as supported
bool ModelImporter::supportsOperator(const char* op_name) const
{
if (std::string(op_name) == "NonMaxSuppression")
{
return false;
}
if (std::string(op_name) == "EfficientNMS_TRT" || std::string(op_name) == "PyramidROIAlign_TRT")
{
return true;
}
return _op_importers.count(op_name);
}
bool ModelImporter::parseWithWeightDescriptors(void const* serialized_onnx_model, size_t serialized_onnx_model_size)
{
_current_node = -1;
// TODO: This function (and its overload below) could do with some cleaning,
// particularly wrt error handling.
// Note: We store a copy of the model so that weight arrays will persist
_onnx_models.emplace_back();
::ONNX_NAMESPACE::ModelProto& model = _onnx_models.back();
bool is_serialized_as_text = false;
Status status
= deserialize_onnx_model(serialized_onnx_model, serialized_onnx_model_size, is_serialized_as_text, &model);
if (status.is_error())
{
_errors.push_back(status);
return false;
}
status = this->importModel(model);
if (status.is_error())
{
status.setNode(_current_node);
_errors.push_back(status);
return false;
}
return true;
}
bool ModelImporter::parse(void const* serialized_onnx_model, size_t serialized_onnx_model_size, const char* model_path)
{
if (model_path)
{
_importer_ctx.setOnnxFileLocation(model_path);
}
return this->parseWithWeightDescriptors(serialized_onnx_model, serialized_onnx_model_size);
}
void removeShapeTensorCasts(IImporterContext* ctx)
{
// Removes any casts on shape tensors, as TensorRT does not support them.
for (int i = 0, e = ctx->network()->getNbLayers(); i < e; ++i)
{
nvinfer1::ILayer* layer = ctx->network()->getLayer(i);
if (layer->getNbOutputs() > 0 && layer->getOutput(0)->isShapeTensor())
{
layer->resetOutputType(0);
nvinfer1::ITensor& t = *layer->getOutput(0);
// Assume that boolean tensors were not cast, and thus have their type correctly set.
const nvinfer1::DataType shapeTensorType = t.getType() == nvinfer1::DataType::kBOOL ? nvinfer1::DataType::kBOOL : nvinfer1::DataType::kINT32;
layer->setOutputType(0, shapeTensorType);
// Set type only if necessary, to avoid TensorRT warnings
// about setting type of non-input/output tensors.
if (t.getType() != shapeTensorType)
{
t.setType(shapeTensorType);
}
// Some layers do not support shape tensor outputs. Keep track of these tensor names
// for supportsModel().
auto type = layer->getType();
auto elementwiseOp = type == nvinfer1::LayerType::kELEMENTWISE ? (static_cast<nvinfer1::IElementWiseLayer*>(layer))->getOperation() : nvinfer1::ElementWiseOperation::kSUM;
auto reduceOp = type == nvinfer1::LayerType::kREDUCE ? (static_cast<nvinfer1::IReduceLayer*>(layer))->getOperation() : nvinfer1::ReduceOperation::kSUM;
auto fillOp = type == nvinfer1::LayerType::kFILL
? (static_cast<nvinfer1::IFillLayer*>(layer))->getOperation()
: nvinfer1::FillOperation::kLINSPACE;
if (!supportsShapeTensor(type, elementwiseOp, reduceOp, fillOp))
{
auto name = layer->getName();
ctx->unsupportedShapeTensors().insert(name);
LOG_ERROR("Found unsupported shape-tensor producing layer:" << name);
}
}
}
}
Status ModelImporter::importModel(
::ONNX_NAMESPACE::ModelProto const& model)
{
ASSERT(!_importer_ctx.network()->hasImplicitBatchDimension() && "This version of the ONNX parser only supports TensorRT INetworkDefinitions with an explicit batch dimension. Please ensure the network was created using the EXPLICIT_BATCH NetworkDefinitionCreationFlag.", ErrorCode::kINVALID_VALUE);
auto* ctx = &_importer_ctx;
_importer_ctx.clearOpsets();
#if ENABLE_STD_PLUGIN
// Initialize plugin registry
initLibNvInferPlugins(static_cast<void*>(&ctx->logger()), "");
#endif // ENABLE_STD_PLUGIN
for (int i = 0; i < model.opset_import().size(); ++i)
{
std::string domain = model.opset_import(i).domain();
int64_t version = model.opset_import(i).version();
// TensorRT requires an ONNX graph to be generated with at least ai.onnx version 7.
// ONNX spec says that the default domain is either an empty string or is "ai.onnx".
if ((domain.empty() || domain == "ai.onnx") && version < 7)
{
LOG_WARNING("TensorRT supports ONNX graphs generated with at least opset 7. Models using older opsets are not guaranteed to work.");
}
_importer_ctx.addOpset(domain, version);
}
::ONNX_NAMESPACE::GraphProto const& graph = model.graph();
// Create a dummy tensors so that we can reserve output names. If the output names are encountered elsewhere
// in the graph, the ctx will know to make the names unique.
for (const ::ONNX_NAMESPACE::ValueInfoProto& output : graph.output())
{
_importer_ctx.registerTensor(TensorOrWeights{}, output.name());
}
_current_node = -1;
CHECK(importInputs(&_importer_ctx, graph, &_importer_ctx.tensors()));
CHECK(parseGraph(&_importer_ctx, graph, model.producer_name() == "TensorRT", &_current_node));
_current_node = -1;
// Mark outputs defined in the ONNX model (unless tensors are user-requested)
for (::ONNX_NAMESPACE::ValueInfoProto const& output : graph.output())
{
ASSERT((_importer_ctx.tensors().count(output.name())) && "The output tensor was not registered.",
ErrorCode::kINVALID_GRAPH);
nvinfer1::ITensor* output_tensor_ptr
= &convertToTensor(_importer_ctx.tensors().at(output.name()), &_importer_ctx);
LOG_VERBOSE("Marking " << output_tensor_ptr->getName() << " as output: " << output.name());
output_tensor_ptr->setName(output.name().c_str());
if (output_tensor_ptr->isNetworkInput())
{
// HACK WAR for TRT not allowing input == output
// TODO: Does this break things by changing the name of the input tensor?
output_tensor_ptr->setName(("__" + output.name()).c_str());
output_tensor_ptr = &identity(&_importer_ctx, output_tensor_ptr).tensor();
ASSERT(output_tensor_ptr && "Failed to add an Identity layer.", ErrorCode::kUNSUPPORTED_NODE);
output_tensor_ptr->setName(output.name().c_str());
}
nvinfer1::ITensor** user_output = _importer_ctx.getUserOutput(output.name().c_str());
if (!user_output)
{
_importer_ctx.network()->markOutput(*output_tensor_ptr);
nvinfer1::DataType output_trt_dtype;
ASSERT(convertDtype(output.type().tensor_type().elem_type(), &output_trt_dtype) && "Failed to convert ONNX date type to TensorRT data type.", ErrorCode::kUNSUPPORTED_NODE);
// For INT32 data type, output type must match tensor type
ASSERT( (output_tensor_ptr->getType() != nvinfer1::DataType::kINT32
|| output_trt_dtype == nvinfer1::DataType::kINT32) && "For INT32 tensors, the output type must also be INT32.",
ErrorCode::kUNSUPPORTED_NODE);
// Note: Without this, output type is always float32
output_tensor_ptr->setType(output_trt_dtype);
}
}
// Return user-requested output tensors
for (auto user_output_entry : _importer_ctx.getUserOutputs())
{
std::string user_output_name = user_output_entry.first;
nvinfer1::ITensor** user_output_ptr = user_output_entry.second;
ASSERT( (_importer_ctx.tensors().count(user_output_name)) && "The user-requested output was not registered.", ErrorCode::kINVALID_VALUE);
TensorOrWeights user_output = _importer_ctx.tensors().at(user_output_name);
ASSERT( (user_output.is_tensor()) && "The user-requested output must be a tensor.", ErrorCode::kINVALID_VALUE);
*user_output_ptr = &user_output.tensor();
}
if (model.producer_name() == "TensorRT")
{
// iterate over all tensors in the network and add them to "tensors" map
string_map<nvinfer1::ITensor*> tensors;
string_map<nvinfer1::ILayer*> layers;
for (int idx = 0; idx < _importer_ctx.network()->getNbInputs(); ++idx)
{
nvinfer1::ITensor* tensor = _importer_ctx.network()->getInput(idx);
if (tensor != nullptr)
{
tensors[tensor->getName()] = tensor;
}
}
for (int idx = 0; idx < _importer_ctx.network()->getNbOutputs(); ++idx)
{
nvinfer1::ITensor* tensor = _importer_ctx.network()->getOutput(idx);
if (tensor != nullptr)
{
tensors[tensor->getName()] = tensor;
}
}
for (int layerIdx = 0; layerIdx < _importer_ctx.network()->getNbLayers(); ++layerIdx)
{
nvinfer1::ILayer* layer = _importer_ctx.network()->getLayer(layerIdx);
for (int idx = 0; idx < layer->getNbInputs(); ++idx)
{
nvinfer1::ITensor* tensor = layer->getInput(idx);
if (tensor != nullptr)
{
tensors[tensor->getName()] = tensor;
}
}
for (int idx = 0; idx < layer->getNbOutputs(); ++idx)
{
nvinfer1::ITensor* tensor = layer->getOutput(idx);
if (tensor != nullptr)
{
tensors[tensor->getName()] = tensor;
}
}
layers[layer->getName()] = layer;
}
// Set locations for all tensors
for (auto const& tensor : ctx->tensorLocations())
{
ASSERT( (tensors.count(tensor.first) > 0) && "The tensor does not have an assigned location.", nvonnxparser::ErrorCode::kINVALID_GRAPH);
tensors.at(tensor.first)->setLocation(tensor.second);
}
// Set dynamic range for all tensors
for (auto const& tensor : ctx->tensorRangeMins())
{
// if there's a min range, there must be a max range as well
ASSERT( (tensors.count(tensor.first) > 0) && "The tensor does not have an assigned location.", nvonnxparser::ErrorCode::kINVALID_GRAPH);
if (!std::isnan(tensor.second))
{
tensors.at(tensor.first)->setDynamicRange(tensor.second, ctx->tensorRangeMaxes().at(tensor.first));
}
}
// Set precisions for all layers
for (auto const& layer : ctx->layerPrecisions())
{
ASSERT( (layers.count(layer.first) > 0) && "The layer does not have an assigned precision.", nvonnxparser::ErrorCode::kINVALID_GRAPH);
layers.at(layer.first)->setPrecision(layer.second);
}
}
removeShapeTensorCasts(ctx);
return Status::success();
}
bool ModelImporter::parseFromFile(const char* onnxModelFile, int32_t verbosity)
{
GOOGLE_PROTOBUF_VERIFY_VERSION;
::ONNX_NAMESPACE::ModelProto onnx_model;
auto* ctx = &_importer_ctx;
const bool is_binary = ParseFromFile_WAR(&onnx_model, onnxModelFile);
if (!is_binary && !ParseFromTextFile(&onnx_model, onnxModelFile))
{
LOG_ERROR("Failed to parse ONNX model from file: " << onnxModelFile);
return false;
}
// Keep track of the absolute path to the ONNX file.
_importer_ctx.setOnnxFileLocation(onnxModelFile);
const int64_t opset_version = (onnx_model.opset_import().size() ? onnx_model.opset_import(0).version() : 0);
LOG_INFO("----------------------------------------------------------------");
LOG_INFO("Input filename: " << onnxModelFile);
LOG_INFO("ONNX IR version: " << onnx_ir_version_string(onnx_model.ir_version()));
LOG_INFO("Opset version: " << opset_version);
LOG_INFO("Producer name: " << onnx_model.producer_name());
LOG_INFO("Producer version: " << onnx_model.producer_version());
LOG_INFO("Domain: " << onnx_model.domain());
LOG_INFO("Model version: " << onnx_model.model_version());
LOG_INFO("Doc string: " << onnx_model.doc_string());
LOG_INFO("----------------------------------------------------------------");
{ //...Read input file, parse it
std::ifstream onnx_file(onnxModelFile, std::ios::binary | std::ios::ate);
const std::streamsize file_size = onnx_file.tellg();
onnx_file.seekg(0, std::ios::beg);
std::vector<char> onnx_buf(file_size);
if (!onnx_file.read(onnx_buf.data(), onnx_buf.size()))
{
LOG_ERROR("Failed to read from file: " << onnxModelFile);
return false;
}
if (!parse(onnx_buf.data(), onnx_buf.size()))
{
const int32_t nerror = getNbErrors();
for (int32_t i = 0; i < nerror; ++i)
{
nvonnxparser::IParserError const* error = getError(i);
if (error->node() != -1)
{
::ONNX_NAMESPACE::NodeProto const& node = onnx_model.graph().node(error->node());
LOG_ERROR("While parsing node number " << error->node() << " [" << node.op_type() << " -> \"" << node.output(0) << "\"" << "]:");
LOG_ERROR("--- Begin node ---");
LOG_ERROR(pretty_print_onnx_to_string(node));
LOG_ERROR("--- End node ---");
}
LOG_ERROR("ERROR: " << error->file() << ":" << error->line() << " In function " << error->func() << ":\n"
<< "[" << static_cast<int>(error->code()) << "] " << error->desc());
}
return false;
}
} //...End Reading input file, parsing it
return true;
}
} // namespace onnx2trt