forked from onnx/onnx-tensorrt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathImporterContext.hpp
315 lines (291 loc) · 9.8 KB
/
ImporterContext.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
/*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#include "onnx2trt.hpp"
#include "onnx2trt_utils.hpp"
#include "onnxErrorRecorder.hpp"
#include "onnx/common/stl_backports.h"
#include <list>
#include <unordered_map>
namespace onnx2trt
{
class ErrorRecorderWrapper
{
public:
ErrorRecorderWrapper(nvinfer1::INetworkDefinition* network, nvinfer1::ILogger* logger)
: mNetwork(network)
, mLogger(logger)
{
if (mNetwork)
{
mUserErrorRecorder = mNetwork->getErrorRecorder();
mOnnxErrorRecorder = ONNXParserErrorRecorder::create(logger, mUserErrorRecorder);
if (mOnnxErrorRecorder)
{
if (mUserErrorRecorder)
{
mUserErrorRecorder->incRefCount();
}
mNetwork->setErrorRecorder(mOnnxErrorRecorder);
}
}
}
~ErrorRecorderWrapper()
{
if (mNetwork && mOnnxErrorRecorder)
{
if (mUserErrorRecorder)
{
mNetwork->setErrorRecorder(mUserErrorRecorder);
mUserErrorRecorder->decRefCount();
}
ONNXParserErrorRecorder::destroy(mOnnxErrorRecorder);
}
}
bool hasError() const
{
return mOnnxErrorRecorder != nullptr && mOnnxErrorRecorder->getNbErrors() != 0;
}
//! Return recorder used by hasError().
nvinfer1::IErrorRecorder* getErrorRecorder() const
{
return mOnnxErrorRecorder ? mOnnxErrorRecorder : nullptr;
}
private:
nvinfer1::INetworkDefinition* mNetwork{nullptr};
nvinfer1::ILogger* mLogger{nullptr};
ONNXParserErrorRecorder* mOnnxErrorRecorder{nullptr};
nvinfer1::IErrorRecorder* mUserErrorRecorder{nullptr};
};
class ImporterContext final : public IImporterContext
{
nvinfer1::INetworkDefinition* mNetwork;
nvinfer1::ILogger* mLogger;
std::list<std::vector<uint8_t>> mTempBufs;
StringMap<nvinfer1::ITensor*> mUserInputs;
StringMap<nvinfer1::ITensor**> mUserOutputs;
StringMap<int64_t> mOpsets;
StringMap<TensorOrWeights> mTensors; // All tensors in the graph mapped to their names.
StringMap<nvinfer1::TensorLocation> mTensorLocations;
StringMap<float> mTensorRangeMins;
StringMap<float> mTensorRangeMaxes;
StringMap<nvinfer1::DataType> mLayerPrecisions;
std::set<std::string> mTensorNames; // Keep track of how many times a tensor name shows up, to avoid duplicate naming in TRT.
std::set<std::string> mLayerNames; // Keep track of how many times a tensor name shows up, to avoid duplicate naming in TRT.
int64_t mSuffixCounter{0}; // increasing suffix counter used to uniquify layer names.
std::unordered_set<std::string> mUnsupportedShapeTensors; // Container to hold output tensor names of layers that produce shape tensor outputs but do not natively support them.
StringMap<std::string> mLoopTensors; // Container to map subgraph tensors to their original outer graph names.
std::string mOnnxFileLocation; // Keep track of the directory of the parsed ONNX file
std::unique_ptr<ErrorRecorderWrapper> mErrorWrapper; // error recorder to control TRT errors
StringMap<nvinfer1::IConstantLayer*> mConstantLayers;
public:
ImporterContext(nvinfer1::INetworkDefinition* network, nvinfer1::ILogger* logger)
: mNetwork(network)
, mLogger(logger)
, mErrorWrapper(ONNX_NAMESPACE::make_unique<ErrorRecorderWrapper>(mNetwork, logger))
{
}
nvinfer1::INetworkDefinition* network() override
{
return mNetwork;
}
StringMap<TensorOrWeights>& tensors() override
{
return mTensors;
}
StringMap<nvinfer1::TensorLocation>& tensorLocations() override
{
return mTensorLocations;
}
StringMap<float>& tensorRangeMins() override
{
return mTensorRangeMins;
}
StringMap<float>& tensorRangeMaxes() override
{
return mTensorRangeMaxes;
}
StringMap<nvinfer1::DataType>& layerPrecisions() override
{
return mLayerPrecisions;
}
std::unordered_set<std::string>& unsupportedShapeTensors() override
{
return mUnsupportedShapeTensors;
}
StringMap<std::string>& loopTensors() override
{
return mLoopTensors;
}
void setOnnxFileLocation(std::string location) override
{
mOnnxFileLocation = location;
}
std::string getOnnxFileLocation() override
{
return mOnnxFileLocation;
}
// This actually handles weights as well, but is named this way to be consistent with the tensors()
void registerTensor(TensorOrWeights tensor, const std::string& basename) override
{
// TRT requires unique tensor names.
const std::string uniqueName = generateUniqueName(mTensorNames, basename);
if (tensor)
{
auto* ctx = this; // To enable logging.
if (tensor.is_tensor())
{
tensor.tensor().setName(uniqueName.c_str());
LOG_VERBOSE("Registering tensor: " << uniqueName << " for ONNX tensor: " << basename);
}
else if (tensor.is_weights())
{
const auto& weights = tensor.weights();
if (tensor.weights().type == ::ONNX_NAMESPACE::TensorProto::INT64)
{
tensor = ShapedWeights{::ONNX_NAMESPACE::TensorProto::INT32,
convertINT64(reinterpret_cast<int64_t*>(weights.values), weights.shape, ctx), weights.shape};
}
tensor.weights().setName(basename.c_str());
}
}
// Overwrite previous tensors registered with the same name (this only happens when there are subgraphs,
// and in that case, overwriting is the desired behavior).
this->tensors()[basename] = std::move(tensor);
}
void registerLayer(nvinfer1::ILayer* layer, const std::string& basename) override
{
// No layer will be added for Constant nodes in ONNX.
if (layer)
{
const std::string name = basename.empty() ? layer->getName() : basename;
const std::string uniqueName = generateUniqueName(mLayerNames, name);
auto* ctx = this; // To enable logging.
LOG_VERBOSE("Registering layer: " << uniqueName << " for ONNX node: " << basename);
layer->setName(uniqueName.c_str());
if (layer->getType() == nvinfer1::LayerType::kCONSTANT)
{
if (basename != uniqueName)
{
LOG_ERROR("Constant layer: " << uniqueName << " can be a duplicate of: " << basename);
assert(!"Internal error: duplicate constant layers for the same weights");
}
mConstantLayers.insert({uniqueName, static_cast<nvinfer1::IConstantLayer*>(layer)});
}
}
}
nvinfer1::ILogger& logger() override
{
return *mLogger;
}
ShapedWeights createTempWeights(ShapedWeights::DataType type, nvinfer1::Dims shape, uint8_t value = 0) override
{
ShapedWeights weights(type, nullptr, shape);
// Need special logic for handling scalars.
if (shape.nbDims == 0)
{
mTempBufs.push_back(std::vector<uint8_t>(getDtypeSize(type), value));
}
else
{
mTempBufs.push_back(std::vector<uint8_t>(weights.size_bytes(), value));
}
weights.values = mTempBufs.back().data();
return weights;
}
bool setUserInput(const char* name, nvinfer1::ITensor* input)
{
mUserInputs[name] = input;
return true;
}
bool setUserOutput(const char* name, nvinfer1::ITensor** output)
{
mUserOutputs[name] = output;
return true;
}
nvinfer1::ITensor* getUserInput(const char* name)
{
if (!mUserInputs.count(name))
{
return nullptr;
}
else
{
return mUserInputs.at(name);
}
}
nvinfer1::ITensor** getUserOutput(const char* name)
{
if (!mUserOutputs.count(name))
{
return nullptr;
}
else
{
return mUserOutputs.at(name);
}
}
StringMap<nvinfer1::ITensor**> const& getUserOutputs() const
{
return mUserOutputs;
}
void clearOpsets()
{
mOpsets.clear();
}
void addOpset(std::string domain, int64_t version)
{
mOpsets.emplace(domain, version);
}
int64_t getOpsetVersion(const char* domain = "") const override
{
if (mOpsets.empty())
{
return 1;
}
else if (mOpsets.size() == 1)
{
return mOpsets.begin()->second;
}
else
{
assert(mOpsets.count(domain));
return mOpsets.at(domain);
}
}
bool hasError() const noexcept override
{
return mErrorWrapper != nullptr && mErrorWrapper->hasError();
}
nvinfer1::IErrorRecorder* getErrorRecorder() const noexcept override
{
return mErrorWrapper ? mErrorWrapper->getErrorRecorder() : nullptr;
}
nvinfer1::IConstantLayer* getConstantLayer(const char* name) const final
{
if (name == nullptr)
{
return nullptr;
}
auto const iter = mConstantLayers.find(name);
if (iter == mConstantLayers.end())
{
return nullptr;
}
return iter->second;
}
private:
std::string generateUniqueName(std::set<std::string>& namesSet, const std::string& basename)
{
std::string candidate = basename;
while (namesSet.find(candidate) != namesSet.end())
{
candidate = basename + "_" + std::to_string(mSuffixCounter);
++mSuffixCounter;
}
namesSet.insert(candidate);
return candidate;
}
};
} // namespace onnx2trt