This dataset consists of data collected at two locations. It covers power modeling results (Figures 15 and 16) presented in Section 4.4 of the paper.
Filename | Description |
---|---|
MN-Wild |
Data and processing scripts for power experiments conducted at Minneapolis, MN |
MI-Wild |
Data and processing scripts for power experiments conducted at Ann Arbor, MI |
dtr_[tm/vz].py |
Python script to run decision tree regression on processed data (tm: T-Mobile data collected at Minneapolis, MN; vz: Verizon data collected at Ann Arbor, MI) |
Here are the software/package requirements. The version number in the bracket indicates the minimum version that our script has been tested on.
- Python 3 (>= 3.7.7)
- Pandas (>= 1.1.3)
- Matplotlib (>= 3.3.1)
- scikit-learn (>= 0.24.0)
After cloning the repository, navigate to Power-Model
folder and run the following command.
python3 dtr_tm.py -d MN-Wild/data-processed/cleaned-logs/ -k t-mobile_nsa -f 1
python3 dtr_tm.py -d MN-Wild/data-processed/cleaned-logs/ -k t-mobile_sa -f 1
python3 dtr_vz.py -d MI-Wild/data-processed/ -k mi-vz-hb -f 1
python3 dtr_vz.py -d MI-Wild/data-processed/ -k mn-vz-hb -f 1
python3 dtr_vz.py -d MI-Wild/data-processed/ -k mn-vz-lb -f 1
For the DTR (decision tree regression) step, we use dtr_vz.py
for all the VZ data and use dtr_tm.py
for all the TM data. The "f" parameter in dtr.py
indicates the feature set (1: TH + SS; 2: TH; 3: SS), the example commands above are using "TH" feature for modeling.