Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Crashing when trying to run "design_motifscaffolding.sh" #264

Open
sahamitul opened this issue Aug 8, 2024 · 1 comment
Open

Crashing when trying to run "design_motifscaffolding.sh" #264

sahamitul opened this issue Aug 8, 2024 · 1 comment

Comments

@sahamitul
Copy link

Hi there,

I get following crash when trying to run "design_motifscaffolding.sh". Any help? Thank you very much!

==========
./design_motifscaffolding.sh
[2024-08-07 22:21:26,650][main][INFO] - Found GPU with device_name NVIDIA RTX 5000 Ada Generation Laptop GPU. Will run RFdiffusion on NVIDIA RTX 5000 Ada Generation Laptop GPU
Reading models from /home/mitul/projs/bi_me.2023_/hd/software/RFdiffusion/rfdiffusion/inference/../../models
[2024-08-07 22:21:26,650][rfdiffusion.inference.model_runners][INFO] - Reading checkpoint from /home/mitul/projs/bi_me.2023_/hd/software/RFdiffusion/rfdiffusion/inference/../../models/Base_ckpt.pt
This is inf_conf.ckpt_path
/home/mitul/projs/bi_me.2023_/hd/software/RFdiffusion/rfdiffusion/inference/../../models/Base_ckpt.pt
Assembling -model, -diffuser and -preprocess configs from checkpoint
USING MODEL CONFIG: self._conf[model][n_extra_block] = 4
USING MODEL CONFIG: self._conf[model][n_main_block] = 32
USING MODEL CONFIG: self._conf[model][n_ref_block] = 4
USING MODEL CONFIG: self._conf[model][d_msa] = 256
USING MODEL CONFIG: self._conf[model][d_msa_full] = 64
USING MODEL CONFIG: self._conf[model][d_pair] = 128
USING MODEL CONFIG: self._conf[model][d_templ] = 64
USING MODEL CONFIG: self._conf[model][n_head_msa] = 8
USING MODEL CONFIG: self._conf[model][n_head_pair] = 4
USING MODEL CONFIG: self._conf[model][n_head_templ] = 4
USING MODEL CONFIG: self._conf[model][d_hidden] = 32
USING MODEL CONFIG: self._conf[model][d_hidden_templ] = 32
USING MODEL CONFIG: self._conf[model][p_drop] = 0.15
USING MODEL CONFIG: self._conf[model][SE3_param_full] = {'num_layers': 1, 'num_channels': 32, 'num_degrees': 2, 'n_heads': 4, 'div': 4, 'l0_in_features': 8, 'l0_out_features': 8, 'l1_in_features': 3, 'l1_out_features': 2, 'num_edge_features': 32}
USING MODEL CONFIG: self._conf[model][SE3_param_topk] = {'num_layers': 1, 'num_channels': 32, 'num_degrees': 2, 'n_heads': 4, 'div': 4, 'l0_in_features': 64, 'l0_out_features': 64, 'l1_in_features': 3, 'l1_out_features': 2, 'num_edge_features': 64}
USING MODEL CONFIG: self._conf[model][freeze_track_motif] = False
USING MODEL CONFIG: self._conf[model][use_motif_timestep] = True
USING MODEL CONFIG: self._conf[diffuser][T] = 50
USING MODEL CONFIG: self._conf[diffuser][b_0] = 0.01
USING MODEL CONFIG: self._conf[diffuser][b_T] = 0.07
USING MODEL CONFIG: self._conf[diffuser][schedule_type] = linear
USING MODEL CONFIG: self._conf[diffuser][so3_type] = igso3
USING MODEL CONFIG: self._conf[diffuser][crd_scale] = 0.25
USING MODEL CONFIG: self._conf[diffuser][so3_schedule_type] = linear
USING MODEL CONFIG: self._conf[diffuser][min_b] = 1.5
USING MODEL CONFIG: self._conf[diffuser][max_b] = 2.5
USING MODEL CONFIG: self._conf[diffuser][min_sigma] = 0.02
USING MODEL CONFIG: self._conf[diffuser][max_sigma] = 1.5
USING MODEL CONFIG: self._conf[preprocess][sidechain_input] = False
USING MODEL CONFIG: self._conf[preprocess][motif_sidechain_input] = True
USING MODEL CONFIG: self._conf[preprocess][d_t1d] = 22
USING MODEL CONFIG: self._conf[preprocess][d_t2d] = 44
USING MODEL CONFIG: self._conf[preprocess][prob_self_cond] = 0.5
USING MODEL CONFIG: self.conf[preprocess][str_self_cond] = True
USING MODEL CONFIG: self.conf[preprocess][predict_previous] = False
[2024-08-07 22:21:41,843][rfdiffusion.inference.model_runners][INFO] - Loading checkpoint.
[2024-08-07 22:21:43,585][rfdiffusion.diffusion][INFO] - Using cached IGSO3.
Successful diffuser init
[2024-08-07 22:21:43,673][main][INFO] - Making design example_outputs/design_motifscaffolding_0
[2024-08-07 22:21:43,752][rfdiffusion.inference.model_runners][INFO] - Using contig: ['10-40/A163-181/10-40']
With this beta schedule (linear schedule, beta_0 = 0.04, beta_T = 0.28), alpha_bar_T = 0.00013696048699785024
[2024-08-07 22:21:43,760][rfdiffusion.inference.model_runners][INFO] - Sequence init: ----------EVNKIKSALLSTNKAVVSL----------------
Error executing job with overrides: ['inference.output_prefix=example_outputs/design_motifscaffolding', 'inference.input_pdb=input_pdbs/5TPN.pdb', 'contigmap.contigs=[10-40/A163-181/10-40]', 'inference.num_designs=10']
Traceback (most recent call last):
File "/home/mitul/projs/bi_me.2023
/hd/software/RFdiffusion/examples/../scripts/run_inference.py", line 94, in main
px0, x_t, seq_t, plddt = sampler.sample_step(
File "/home/mitul/projs/bi_me.2023
/hd/software/RFdiffusion/rfdiffusion/inference/model_runners.py", line 664, in sample_step
msa_prev, pair_prev, px0, state_prev, alpha, logits, plddt = self.model(msa_masked,
File "/home/mitul/software/anaconda3/envs/SE3nv/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1051, in call_impl
return forward_call(*input, **kwargs)
File "/home/mitul/projs/bi_me.2023
/hd/software/RFdiffusion/rfdiffusion/RoseTTAFoldModel.py", line 102, in forward
msa, pair, R, T, alpha_s, state = self.simulator(seq, msa_latent, msa_full, pair, xyz[:,:,:3],
File "/home/mitul/software/anaconda3/envs/SE3nv/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1051, in call_impl
return forward_call(*input, **kwargs)
File "/home/mitul/projs/bi_me.2023
/hd/software/RFdiffusion/rfdiffusion/Track_module.py", line 420, in forward
msa_full, pair, R_in, T_in, state, alpha = self.extra_block[i_m](msa_full,
File "/home/mitul/software/anaconda3/envs/SE3nv/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1051, in call_impl
return forward_call(*input, **kwargs)
File "/home/mitul/projs/bi_me.2023
/hd/software/RFdiffusion/rfdiffusion/Track_module.py", line 332, in forward
R, T, state, alpha = self.str2str(msa, pair, R_in, T_in, xyz, state, idx, motif_mask=motif_mask, top_k=0)
File "/home/mitul/software/anaconda3/envs/SE3nv/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1051, in call_impl
return forward_call(*input, **kwargs)
File "/home/mitul/software/anaconda3/envs/SE3nv/lib/python3.9/site-packages/torch/cuda/amp/autocast_mode.py", line 141, in decorate_autocast
return func(*args, **kwargs)
File "/home/mitul/projs/bi_me.2023
/hd/software/RFdiffusion/rfdiffusion/Track_module.py", line 266, in forward
shift = self.se3(G, node.reshape(B*L, -1, 1), l1_feats, edge_feats)
File "/home/mitul/software/anaconda3/envs/SE3nv/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1051, in call_impl
return forward_call(*input, **kwargs)
File "/home/mitul/projs/bi_me.2023
/hd/software/RFdiffusion/rfdiffusion/SE3_network.py", line 83, in forward
return self.se3(G, node_features, edge_features)
File "/home/mitul/software/anaconda3/envs/SE3nv/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1051, in _call_impl
return forward_call(*input, **kwargs)
File "/home/mitul/software/anaconda3/envs/SE3nv/lib/python3.9/site-packages/se3_transformer-1.0.0-py3.9.egg/se3_transformer/model/transformer.py", line 140, in forward
basis = basis or get_basis(graph.edata['rel_pos'], max_degree=self.max_degree, compute_gradients=False,
File "/home/mitul/software/anaconda3/envs/SE3nv/lib/python3.9/site-packages/se3_transformer-1.0.0-py3.9.egg/se3_transformer/model/basis.py", line 167, in get_basis
spherical_harmonics = get_spherical_harmonics(relative_pos, max_degree)
File "/home/mitul/software/anaconda3/envs/SE3nv/lib/python3.9/site-packages/se3_transformer-1.0.0-py3.9.egg/se3_transformer/model/basis.py", line 58, in get_spherical_harmonics
sh = o3.spherical_harmonics(all_degrees, relative_pos, normalize=True)
File "/home/mitul/software/anaconda3/envs/SE3nv/lib/python3.9/site-packages/e3nn/o3/_spherical_harmonics.py", line 180, in spherical_harmonics
return sh(x)
File "/home/mitul/software/anaconda3/envs/SE3nv/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1051, in _call_impl
return forward_call(*input, **kwargs)
File "/home/mitul/software/anaconda3/envs/SE3nv/lib/python3.9/site-packages/e3nn/o3/_spherical_harmonics.py", line 82, in forward
sh = _spherical_harmonics(self._lmax, x[..., 0], x[..., 1], x[..., 2])
RuntimeError: nvrtc: error: invalid value for --gpu-architecture (-arch)

nvrtc compilation failed:

#define NAN __int_as_float(0x7fffffff)
#define POS_INFINITY __int_as_float(0x7f800000)
#define NEG_INFINITY __int_as_float(0xff800000)

template
device T maximum(T a, T b) {
return isnan(a) ? a : (a > b ? a : b);
}

template
device T minimum(T a, T b) {
return isnan(a) ? a : (a < b ? a : b);
}

extern "C" global
void fused_pow_pow_pow_su_9196483836509741110(float* tz_1, float* ty_1, float* tx_1, float* aten_mul, float* aten_mul_1, float* aten_mul_2, float* aten_sub, float* aten_add, float* aten_mul_3, float* aten_pow) {
{
if (512 * blockIdx.x + threadIdx.x<1980 ? 1 : 0) {
float ty_1_1 = __ldg(ty_1 + 3 * (512 * blockIdx.x + threadIdx.x));
aten_pow[512 * blockIdx.x + threadIdx.x] = ty_1_1 * ty_1_1;
float tz_1_1 = __ldg(tz_1 + 3 * (512 * blockIdx.x + threadIdx.x));
float tx_1_1 = __ldg(tx_1 + 3 * (512 * blockIdx.x + threadIdx.x));
aten_mul_3[512 * blockIdx.x + threadIdx.x] = (float)((double)(tz_1_1 * tz_1_1 - tx_1_1 * tx_1_1) * 0.8660254037844386);
aten_add[512 * blockIdx.x + threadIdx.x] = tx_1_1 * tx_1_1 + tz_1_1 * tz_1_1;
aten_sub[512 * blockIdx.x + threadIdx.x] = ty_1_1 * ty_1_1 - (float)((double)(tx_1_1 * tx_1_1 + tz_1_1 * tz_1_1) * 0.5);
aten_mul_2[512 * blockIdx.x + threadIdx.x] = (float)((double)(ty_1_1) * 1.732050807568877) * tz_1_1;
aten_mul_1[512 * blockIdx.x + threadIdx.x] = (float)((double)(tx_1_1) * 1.732050807568877) * ty_1_1;
aten_mul[512 * blockIdx.x + threadIdx.x] = (float)((double)(tx_1_1) * 1.732050807568877) * tz_1_1;
}
}
}

Set the environment variable HYDRA_FULL_ERROR=1 for a complete stack trace.

==========

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant