-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathpartition_mnist.py
42 lines (30 loc) · 1.27 KB
/
partition_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
from utils import mnist_reader
from utils.download import download
import random
import pickle
download(directory="mnist", url="http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz", extract_gz=True)
download(directory="mnist", url="http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz", extract_gz=True)
download(directory="mnist", url="http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz", extract_gz=True)
download(directory="mnist", url="http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz", extract_gz=True)
folds = 5
#Split mnist into 5 folds:
mnist = items_train = mnist_reader.Reader('mnist', train=True, test=True).items
class_bins = {}
random.shuffle(mnist)
for x in mnist:
if x[0] not in class_bins:
class_bins[x[0]] = []
class_bins[x[0]].append(x)
mnist_folds = [[] for _ in range(folds)]
for _class, data in class_bins.items():
count = len(data)
print("Class %d count: %d" % (_class, count))
count_per_fold = count // folds
for i in range(folds):
mnist_folds[i] += data[i * count_per_fold: (i + 1) * count_per_fold]
print("Folds sizes:")
for i in range(len(mnist_folds)):
print(len(mnist_folds[i]))
output = open('data_fold_%d.pkl' % i, 'wb')
pickle.dump(mnist_folds[i], output)
output.close()