-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathnet.py
187 lines (156 loc) · 6.26 KB
/
net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import torch
from torch import nn
from torch.nn import functional as F
class VAE(nn.Module):
def __init__(self, zsize):
super(VAE, self).__init__()
d = 128
self.zsize = zsize
self.deconv1 = nn.ConvTranspose2d(zsize, d * 2, 4, 1, 0)
self.deconv1_bn = nn.BatchNorm2d(d * 2)
self.deconv2 = nn.ConvTranspose2d(d * 2, d * 2, 4, 2, 1)
self.deconv2_bn = nn.BatchNorm2d(d * 2)
self.deconv3 = nn.ConvTranspose2d(d * 2, d, 4, 2, 1)
self.deconv3_bn = nn.BatchNorm2d(d)
self.deconv4 = nn.ConvTranspose2d(d, 1, 4, 2, 1)
self.conv1 = nn.Conv2d(1, d // 2, 4, 2, 1)
self.conv2 = nn.Conv2d(d // 2, d * 2, 4, 2, 1)
self.conv2_bn = nn.BatchNorm2d(d * 2)
self.conv3 = nn.Conv2d(d * 2, d * 4, 4, 2, 1)
self.conv3_bn = nn.BatchNorm2d(d * 4)
self.conv4_1 = nn.Conv2d(d * 4, zsize, 4, 1, 0)
self.conv4_2 = nn.Conv2d(d * 4, zsize, 4, 1, 0)
def encode(self, x):
x = F.relu(self.conv1(x), 0.2)
x = F.relu(self.conv2_bn(self.conv2(x)), 0.2)
x = F.relu(self.conv3_bn(self.conv3(x)), 0.2)
h1 = self.conv4_1(x)
h2 = self.conv4_2(x)
return h1, h2
def reparameterize(self, mu, logvar):
if self.training:
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return eps.mul(std).add_(mu)
else:
return mu
def decode(self, z):
x = z.view(-1, self.zsize, 1, 1)
x = F.relu(self.deconv1_bn(self.deconv1(x)))
x = F.relu(self.deconv2_bn(self.deconv2(x)))
x = F.relu(self.deconv3_bn(self.deconv3(x)))
x = F.tanh(self.deconv4(x)) * 0.5 + 0.5
return x
def forward(self, x):
mu, logvar = self.encode(x)
mu = mu.squeeze()
logvar = logvar.squeeze()
z = self.reparameterize(mu, logvar)
return self.decode(z.view(-1, self.zsize, 1, 1)), mu, logvar
def weight_init(self, mean, std):
for m in self._modules:
normal_init(self._modules[m], mean, std)
class Generator(nn.Module):
# initializers
def __init__(self, z_size, d=128, channels=1):
super(Generator, self).__init__()
self.deconv1_1 = nn.ConvTranspose2d(z_size, d*2, 4, 1, 0)
self.deconv1_1_bn = nn.BatchNorm2d(d*2)
self.deconv1_2 = nn.ConvTranspose2d(10, d*2, 4, 1, 0)
self.deconv1_2_bn = nn.BatchNorm2d(d*2)
self.deconv2 = nn.ConvTranspose2d(d*2, d*2, 4, 2, 1)
self.deconv2_bn = nn.BatchNorm2d(d*2)
self.deconv3 = nn.ConvTranspose2d(d*2, d, 4, 2, 1)
self.deconv3_bn = nn.BatchNorm2d(d)
self.deconv4 = nn.ConvTranspose2d(d, channels, 4, 2, 1)
# weight_init
def weight_init(self, mean, std):
for m in self._modules:
normal_init(self._modules[m], mean, std)
# forward method
def forward(self, input):#, label):
x = F.relu(self.deconv1_1_bn(self.deconv1_1(input)))
x = F.relu(self.deconv2_bn(self.deconv2(x)))
x = F.relu(self.deconv3_bn(self.deconv3(x)))
x = F.tanh(self.deconv4(x)) * 0.5 + 0.5
return x
class Discriminator(nn.Module):
# initializers
def __init__(self, d=128, channels=1):
super(Discriminator, self).__init__()
self.conv1_1 = nn.Conv2d(channels, d//2, 4, 2, 1)
self.conv2 = nn.Conv2d(d // 2, d*2, 4, 2, 1)
self.conv2_bn = nn.BatchNorm2d(d*2)
self.conv3 = nn.Conv2d(d*2, d*4, 4, 2, 1)
self.conv3_bn = nn.BatchNorm2d(d*4)
self.conv4 = nn.Conv2d(d * 4, 1, 4, 1, 0)
# weight_init
def weight_init(self, mean, std):
for m in self._modules:
normal_init(self._modules[m], mean, std)
# forward method
def forward(self, input):
x = F.leaky_relu(self.conv1_1(input), 0.2)
x = F.leaky_relu(self.conv2_bn(self.conv2(x)), 0.2)
x = F.leaky_relu(self.conv3_bn(self.conv3(x)), 0.2)
x = F.sigmoid(self.conv4(x))
return x
class Encoder(nn.Module):
# initializers
def __init__(self, z_size, d=128, channels=1):
super(Encoder, self).__init__()
self.conv1_1 = nn.Conv2d(channels, d//2, 4, 2, 1)
self.conv2 = nn.Conv2d(d // 2, d*2, 4, 2, 1)
self.conv2_bn = nn.BatchNorm2d(d*2)
self.conv3 = nn.Conv2d(d*2, d*4, 4, 2, 1)
self.conv3_bn = nn.BatchNorm2d(d*4)
self.conv4 = nn.Conv2d(d * 4, z_size, 4, 1, 0)
# weight_init
def weight_init(self, mean, std):
for m in self._modules:
normal_init(self._modules[m], mean, std)
# forward method
def forward(self, input):
x = F.leaky_relu(self.conv1_1(input), 0.2)
x = F.leaky_relu(self.conv2_bn(self.conv2(x)), 0.2)
x = F.leaky_relu(self.conv3_bn(self.conv3(x)), 0.2)
x = self.conv4(x)
return x
class ZDiscriminator(nn.Module):
# initializers
def __init__(self, z_size, batchSize, d=128):
super(ZDiscriminator, self).__init__()
self.linear1 = nn.Linear(z_size, d)
self.linear2 = nn.Linear(d, d)
self.linear3 = nn.Linear(d, 1)
# weight_init
def weight_init(self, mean, std):
for m in self._modules:
normal_init(self._modules[m], mean, std)
# forward method
def forward(self, x):
x = F.leaky_relu((self.linear1(x)), 0.2)
x = F.leaky_relu((self.linear2(x)), 0.2)
x = F.sigmoid(self.linear3(x))
return x
class ZDiscriminator_mergebatch(nn.Module):
# initializers
def __init__(self, z_size, batchSize, d=128):
super(ZDiscriminator_mergebatch, self).__init__()
self.linear1 = nn.Linear(z_size, d)
self.linear2 = nn.Linear(d * batchSize, d)
self.linear3 = nn.Linear(d, 1)
# weight_init
def weight_init(self, mean, std):
for m in self._modules:
normal_init(self._modules[m], mean, std)
# forward method
def forward(self, x):
x = F.leaky_relu((self.linear1(x)), 0.2).view(1, -1) # after the second layer all samples are concatenated
x = F.leaky_relu((self.linear2(x)), 0.2)
x = F.sigmoid(self.linear3(x))
return x
def normal_init(m, mean, std):
if isinstance(m, nn.ConvTranspose2d) or isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear):
m.weight.data.normal_(mean, std)
m.bias.data.zero_()