forked from FFrankyy/DrBC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBetLearn.py
506 lines (440 loc) · 23.8 KB
/
BetLearn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
@author: fanchangjun
"""
from __future__ import print_function, division
import tensorflow as tf
import networkx as nx
import time
import sys
import numpy as np
from tqdm import tqdm
import graph
import utils
import PrepareBatchGraph
import metrics
import pickle as cp
import os
EMBEDDING_SIZE = 128 # embedding dimension
LEARNING_RATE = 0.0001
BATCH_SIZE = 16
max_bp_iter = 5 # neighbor propagation steps
REG_HIDDEN = (int)(EMBEDDING_SIZE / 2) # hidden dimension in the MLP decoder
initialization_stddev = 0.01
NUM_MIN = 100 # minimum training scale (node set size)
NUM_MAX = 200 # maximum training scale (node set size)
MAX_ITERATION = 10000 # training iterations
n_valid = 100 # number of validation graphs
aggregatorID = 2 # how to aggregate node neighbors, 0:sum; 1:mean; 2:GCN(weighted sum)
combineID = 1 # how to combine self embedding and neighbor embedding,
# 0:structure2vec(add node feature and neighbor embedding)
#1:graphsage(concatenation); 2:gru
JK = 1 # layer aggregation, #0: do not use each layer's embedding;
#aggregate each layer's embedding with:
# 1:max_pooling; 2:min_pooling;
# 3:mean_pooling; 4:LSTM with attention
node_feat_dim = 3 # initial node features, [Dc,1,1]
aux_feat_dim = 4 # extra node features in the hidden layer in the decoder, [Dc,CI1,CI2,1]
INF = 100000000000
class BetLearn:
def __init__(self):
# init some parameters
self.g_type = 'powerlaw' #'erdos_renyi', 'powerlaw', 'small-world', 'barabasi_albert'
self.embedding_size = EMBEDDING_SIZE
self.learning_rate = LEARNING_RATE
self.reg_hidden = REG_HIDDEN
self.TrainSet = graph.py_GSet()
self.TestSet = graph.py_GSet()
self.utils = utils.py_Utils()
self.TrainBetwList = []
self.TestBetwList = []
self.metrics = metrics.py_Metrics()
self.inputs = dict()
self.activation = tf.nn.leaky_relu #leaky_relu relu selu elu
self.ngraph_train = 0
self.ngraph_test = 0
# [node_cnt, node_feat_dim]
self.node_feat = tf.placeholder(tf.float32, name="node_feat")
# [node_cnt, aux_feat_dim]
self.aux_feat = tf.placeholder(tf.float32, name="aux_feat")
# [node_cnt, node_cnt]
self.n2nsum_param = tf.sparse_placeholder(tf.float64, name="n2nsum_param")
# [node_cnt,1]
self.label = tf.placeholder(tf.float32, shape=[None,1], name="label")
# sample node pairs to compute the ranking loss
self.pair_ids_src = tf.placeholder(tf.int32, shape=[1,None], name='pair_ids_src')
self.pair_ids_tgt = tf.placeholder(tf.int32, shape=[1,None], name='pair_ids_tgt')
self.loss, self.trainStep, self.betw_pred, self.node_embedding, self.param_list = self.BuildNet()
self.saver = tf.train.Saver(max_to_keep=None)
config = tf.ConfigProto(device_count={"CPU": 8}, # limit to num_cpu_core CPU usage
inter_op_parallelism_threads=100,
intra_op_parallelism_threads=100,
log_device_placement=False)
config.gpu_options.allow_growth = True
self.session = tf.Session(config=config)
self.session.run(tf.global_variables_initializer())
def BuildNet(self):
# [node_feat_dim, embed_dim]
w_n2l = tf.Variable(tf.truncated_normal([node_feat_dim, self.embedding_size], stddev=initialization_stddev), tf.float32, name="w_n2l")
# [embed_dim, embed_dim]
p_node_conv = tf.Variable(tf.truncated_normal([self.embedding_size, self.embedding_size], stddev=initialization_stddev), tf.float32,name="p_node_conv")
if combineID == 1: # 'graphsage'
# [embed_dim, embed_dim]
p_node_conv2 = tf.Variable(tf.truncated_normal([self.embedding_size, self.embedding_size], stddev=initialization_stddev), tf.float32,name="p_node_conv2")
# [2*embed_dim, embed_dim]
p_node_conv3 = tf.Variable(tf.truncated_normal([2 * self.embedding_size, self.embedding_size], stddev=initialization_stddev), tf.float32,name="p_node_conv3")
elif combineID ==2: #GRU
w_r = tf.Variable(tf.truncated_normal([self.embedding_size, self.embedding_size], stddev=initialization_stddev), tf.float32,name="w_r")
u_r = tf.Variable(tf.truncated_normal([self.embedding_size, self.embedding_size], stddev=initialization_stddev), tf.float32,name="u_r")
w_z = tf.Variable(tf.truncated_normal([self.embedding_size, self.embedding_size], stddev=initialization_stddev), tf.float32,name="w_z")
u_z = tf.Variable(tf.truncated_normal([self.embedding_size, self.embedding_size], stddev=initialization_stddev), tf.float32,name="u_z")
w = tf.Variable(tf.truncated_normal([self.embedding_size, self.embedding_size], stddev=initialization_stddev), tf.float32,name="w")
u = tf.Variable(tf.truncated_normal([self.embedding_size, self.embedding_size], stddev=initialization_stddev), tf.float32,name="u")
# [embed_dim, reg_hidden]
h1_weight = tf.Variable(tf.truncated_normal([self.embedding_size, self.reg_hidden], stddev=initialization_stddev), tf.float32,name="h1_weight")
# [reg_hidden+aux_feat_dim, 1]
h2_weight = tf.Variable(tf.truncated_normal([self.reg_hidden+aux_feat_dim, 1], stddev=initialization_stddev), tf.float32,name="h2_weight")
# [reg_hidden, 1]
last_w = h2_weight
# [node_cnt, node_feat_dim]
node_size = tf.shape(self.n2nsum_param)[0]
node_input = self.node_feat
#[node_cnt, embed_dim]
input_message = tf.matmul(tf.cast(node_input, tf.float32), w_n2l)
lv = 0
# [node_cnt, embed_dim], no sparse
cur_message_layer = self.activation(input_message)
cur_message_layer = tf.nn.l2_normalize(cur_message_layer, axis=1)
if JK: # # 1:max_pooling; 2:min_pooling; 3:mean_pooling; 4:LSTM with attention
cur_message_layer_JK = cur_message_layer
if JK == 4: #LSTM init hidden layer
w_r_JK = tf.Variable(tf.truncated_normal([self.embedding_size, self.embedding_size], stddev=initialization_stddev), tf.float32,name="w_r_JK")
u_r_JK = tf.Variable(tf.truncated_normal([self.embedding_size, self.embedding_size], stddev=initialization_stddev), tf.float32,name="u_r_JK")
w_z_JK = tf.Variable(tf.truncated_normal([self.embedding_size, self.embedding_size], stddev=initialization_stddev), tf.float32,name="w_z_JK")
u_z_JK = tf.Variable(tf.truncated_normal([self.embedding_size, self.embedding_size], stddev=initialization_stddev), tf.float32,name="u_z_JK")
w_JK = tf.Variable(tf.truncated_normal([self.embedding_size, self.embedding_size], stddev=initialization_stddev), tf.float32,name="w_JK")
u_JK = tf.Variable(tf.truncated_normal([self.embedding_size, self.embedding_size], stddev=initialization_stddev), tf.float32,name="u_JK")
#attention matrix
JK_attention = tf.Variable(tf.truncated_normal([self.embedding_size, 1], stddev=initialization_stddev), tf.float32,name="JK_attention")
#attention list
JK_attention_list =[]
JK_Hidden_list=[]
cur_message_layer_list = []
cur_message_layer_list.append(cur_message_layer)
JK_Hidden = tf.truncated_normal(tf.shape(cur_message_layer), stddev=initialization_stddev)
# max_bp_iter steps of neighbor propagation
while lv < max_bp_iter:
lv = lv + 1
# [node_cnt, node_cnt]*[node_cnt, embed_dim] = [node_cnt, embed_dim]
n2npool = tf.sparse_tensor_dense_matmul(tf.cast(self.n2nsum_param, tf.float64), tf.cast(cur_message_layer, tf.float64))
n2npool = tf.cast(n2npool, tf.float32)
# [node_cnt, embed_dim] * [embedding, embedding] = [node_cnt, embed_dim], dense
node_linear = tf.matmul(n2npool, p_node_conv)
if combineID == 0: # 'structure2vec'
# [node_cnt, embed_dim] + [node_cnt, embed_dim] = [node_cnt, embed_dim], return tensed matrix
merged_linear = tf.add(node_linear, input_message)
# [node_cnt, embed_dim]
cur_message_layer = self.activation(merged_linear)
if JK==1:
cur_message_layer_JK = tf.maximum(cur_message_layer_JK,cur_message_layer)
elif JK==2:
cur_message_layer_JK = tf.minimum(cur_message_layer_JK, cur_message_layer)
elif JK==3:
cur_message_layer_JK = tf.add(cur_message_layer_JK, cur_message_layer)
elif JK == 4:
cur_message_layer_list.append(cur_message_layer)
elif combineID == 1: # 'graphsage'
# [node_cnt, embed_dim] * [embed_dim, embed_dim] = [node_cnt, embed_dim], dense
cur_message_layer_linear = tf.matmul(tf.cast(cur_message_layer, tf.float32), p_node_conv2)
# [[node_cnt, embed_dim] [node_cnt, embed_dim]] = [node_cnt, 2*embed_dim], return tensed matrix
merged_linear = tf.concat([node_linear, cur_message_layer_linear], 1)
# [node_cnt, 2*embed_dim]*[2*embed_dim, embed_dim] = [node_cnt, embed_dim]
cur_message_layer = self.activation(tf.matmul(merged_linear, p_node_conv3))
if JK == 1:
cur_message_layer_JK = tf.maximum(cur_message_layer_JK,cur_message_layer)
elif JK == 2:
cur_message_layer_JK = tf.minimum(cur_message_layer_JK, cur_message_layer)
elif JK == 3:
cur_message_layer_JK = tf.add(cur_message_layer_JK, cur_message_layer)
elif JK == 4:
cur_message_layer_list.append(cur_message_layer)
elif combineID==2: #gru
r_t = tf.nn.relu(tf.add(tf.matmul(node_linear,w_r), tf.matmul(cur_message_layer,u_r)))
z_t = tf.nn.relu(tf.add(tf.matmul(node_linear,w_z), tf.matmul(cur_message_layer,u_z)))
h_t = tf.nn.tanh(tf.add(tf.matmul(node_linear,w), tf.matmul(r_t*cur_message_layer,u)))
cur_message_layer = (1-z_t)*cur_message_layer + z_t*h_t
cur_message_layer = tf.nn.l2_normalize(cur_message_layer, axis=1)
if JK == 1:
cur_message_layer_JK = tf.maximum(cur_message_layer_JK,cur_message_layer)
elif JK == 2:
cur_message_layer_JK = tf.minimum(cur_message_layer_JK, cur_message_layer)
elif JK == 3:
cur_message_layer_JK = tf.add(cur_message_layer_JK, cur_message_layer)
elif JK == 4:
cur_message_layer_list.append(cur_message_layer)
cur_message_layer = tf.nn.l2_normalize(cur_message_layer, axis=1)
if JK == 1 or JK == 2:
cur_message_layer = cur_message_layer_JK
elif JK == 3:
cur_message_layer = cur_message_layer_JK / (max_bp_iter+1)
elif JK == 4:
for X_value in cur_message_layer_list:
#[node_cnt,embed_size]
r_t_JK = tf.nn.relu(tf.add(tf.matmul(X_value, w_r_JK), tf.matmul(JK_Hidden, u_r_JK)))
z_t_JK = tf.nn.relu(tf.add(tf.matmul(X_value, w_z_JK), tf.matmul(JK_Hidden, u_z_JK)))
h_t_JK = tf.nn.tanh(tf.add(tf.matmul(X_value, w_JK), tf.matmul(r_t_JK * JK_Hidden, u_JK)))
JK_Hidden = (1 - z_t_JK) * h_t_JK + z_t_JK * JK_Hidden
JK_Hidden = tf.nn.l2_normalize(JK_Hidden, axis=1)
#[max_bp_iter+1,node_cnt,embed_size]
JK_Hidden_list.append(JK_Hidden)
# [max_bp_iter+1,node_cnt,1] = [node_cnt,embed_size]*[embed_size,1]=[node_cnt,1]
attention = tf.nn.tanh(tf.matmul(JK_Hidden, JK_attention))
JK_attention_list.append(attention)
cur_message_layer = JK_Hidden
# [max_bp_iter+1,node_cnt,1]
JK_attentions = tf.reshape(JK_attention_list, [max_bp_iter + 1, node_size, 1])
cofficient = tf.nn.softmax(JK_attentions, axis=0)
JK_Hidden_list = tf.reshape(JK_Hidden_list, [max_bp_iter + 1, node_size, self.embedding_size])
# [max_bpr_iter+1,node_cnt,1]* [max_bp_iter + 1,node_cnt,embed_size] = [max_bp_iter + 1,node_cnt,embed_size]
#[max_bp_iter + 1,node_cnt,embed_size]
result = cofficient * JK_Hidden_list
cur_message_layer = tf.reduce_sum(result, 0)
cur_message_layer = tf.reshape(cur_message_layer, [node_size, self.embedding_size])
cur_message_layer = tf.nn.l2_normalize(cur_message_layer, axis=1)
# node embedding, [node_cnt, embed_dim]
embed_s_a = cur_message_layer
# decoder, two-layer MLP
hidden = tf.matmul(embed_s_a, h1_weight)
last_output = self.activation(hidden)
last_output = tf.concat([last_output, self.aux_feat], axis=1)
betw_pred = tf.matmul(last_output, last_w)
# [pair_size, 1]
labels = tf.nn.embedding_lookup(self.label, self.pair_ids_src) - tf.nn.embedding_lookup(self.label, self.pair_ids_tgt)
preds = tf.nn.embedding_lookup(betw_pred, self.pair_ids_src) - tf.nn.embedding_lookup(betw_pred, self.pair_ids_tgt)
loss = self.pairwise_ranking_loss(preds, labels)
trainStep = tf.train.AdamOptimizer(self.learning_rate).minimize(loss)
return loss, trainStep, betw_pred,embed_s_a,tf.trainable_variables()
def pairwise_ranking_loss(self, preds, labels):
"""Logit cross-entropy loss with masking."""
loss = tf.nn.sigmoid_cross_entropy_with_logits(logits=preds, labels=tf.sigmoid(labels))
loss = tf.reduce_sum(loss, axis=1)
return tf.reduce_mean(loss)
def gen_graph(self, num_min, num_max):
cur_n = np.random.randint(num_max - num_min + 1) + num_min
if self.g_type == 'erdos_renyi':
g = nx.erdos_renyi_graph(n=cur_n, p=0.15)
elif self.g_type == 'small-world':
g = nx.connected_watts_strogatz_graph(n=cur_n, k=8, p=0.1)
elif self.g_type == 'barabasi_albert':
g = nx.barabasi_albert_graph(n=cur_n, m=4)
elif self.g_type == 'powerlaw':
g = nx.powerlaw_cluster_graph(n=cur_n, m=4, p=0.05)
return g
def gen_new_graphs(self, num_min, num_max):
print('\ngenerating new training graphs...')
self.ClearTrainGraphs()
for i in tqdm(range(1000)):
g = self.gen_graph(num_min, num_max)
self.InsertGraph(g, is_test=False)
bc = self.utils.Betweenness(self.GenNetwork(g))
bc_log = self.utils.bc_log
self.TrainBetwList.append(bc_log)
def ClearTrainGraphs(self):
self.ngraph_train = 0
self.TrainSet.Clear()
self.TrainBetwList = []
self.TrainBetwRankList = []
def ClearTestGraphs(self):
self.ngraph_test = 0
self.TestSet.Clear()
self.TestBetwList = []
def InsertGraph(self, g, is_test):
if is_test:
t = self.ngraph_test
self.ngraph_test += 1
self.TestSet.InsertGraph(t, self.GenNetwork(g))
else:
t = self.ngraph_train
self.ngraph_train += 1
self.TrainSet.InsertGraph(t, self.GenNetwork(g))
def PrepareValidData(self):
print('\ngenerating validation graphs...')
sys.stdout.flush()
self.ClearTestGraphs()
for i in tqdm(range(n_valid)):
g = self.gen_graph(NUM_MIN, NUM_MAX)
self.InsertGraph(g, is_test=True)
bc = self.utils.Betweenness(self.GenNetwork(g))
self.TestBetwList.append(bc)
def SetupBatchGraph(self,g_list):
prepareBatchGraph = PrepareBatchGraph.py_PrepareBatchGraph(aggregatorID)
prepareBatchGraph.SetupBatchGraph(g_list)
self.inputs['n2nsum_param'] = prepareBatchGraph.n2nsum_param
self.inputs['node_feat'] = prepareBatchGraph.node_feat
self.inputs['aux_feat'] = prepareBatchGraph.aux_feat
self.inputs['pair_ids_src'] = prepareBatchGraph.pair_ids_src
self.inputs['pair_ids_tgt'] = prepareBatchGraph.pair_ids_tgt
assert (len(prepareBatchGraph.pair_ids_src) == len(prepareBatchGraph.pair_ids_tgt))
return prepareBatchGraph.idx_map_list
def SetupTrain(self, g_list, label_log):
self.inputs['label'] = label_log
self.SetupBatchGraph(g_list)
def SetupPred(self, g_list):
idx_map_list = self.SetupBatchGraph(g_list)
return idx_map_list
def Predict(self, g_list):
idx_map_list = self.SetupPred(g_list)
my_dict=dict()
my_dict[self.n2nsum_param]=self.inputs['n2nsum_param']
my_dict[self.aux_feat] = self.inputs['aux_feat']
my_dict[self.node_feat] = self.inputs['node_feat']
result = self.session.run([self.betw_pred], feed_dict=my_dict)
idx_map = idx_map_list[0]
result_output = []
result_data = result[0]
for i in range(len(result_data)):
if idx_map[i] >= 0: # corresponds to nodes with 0.0 betw_log value
result_output.append(np.power(10,-result_data[i][0]))
else:
result_output.append(0.0)
return result_output
def Fit(self):
g_list, id_list = self.TrainSet.Sample_Batch(BATCH_SIZE)
Betw_Label_List = []
for id in id_list:
Betw_Label_List += self.TrainBetwList[id]
label = np.resize(Betw_Label_List, [len(Betw_Label_List), 1])
self.SetupTrain(g_list, label)
my_dict=dict()
my_dict[self.n2nsum_param]=self.inputs['n2nsum_param']
my_dict[self.aux_feat] = self.inputs['aux_feat']
my_dict[self.node_feat] = self.inputs['node_feat']
my_dict[self.label] = self.inputs['label']
my_dict[self.pair_ids_src] = np.reshape(self.inputs['pair_ids_src'], [1, len(self.inputs['pair_ids_src'])])
my_dict[self.pair_ids_tgt] = np.reshape(self.inputs['pair_ids_tgt'], [1, len(self.inputs['pair_ids_tgt'])])
result = self.session.run([self.loss, self.trainStep], feed_dict=my_dict)
loss = result[0]
return loss / len(g_list)
def Train(self):
self.PrepareValidData()
self.gen_new_graphs(NUM_MIN, NUM_MAX)
save_dir = './models'
VCFile = '%s/ValidValue.csv' % (save_dir)
f_out = open(VCFile, 'w')
for iter in range(MAX_ITERATION):
TrainLoss = self.Fit()
start = time.clock()
if iter and iter % 5000 == 0:
self.gen_new_graphs(NUM_MIN, NUM_MAX)
if iter % 500 == 0:
if (iter == 0):
N_start = start
else:
N_start = N_end
frac_topk, frac_kendal = 0.0, 0.0
test_start = time.time()
for idx in range(n_valid):
run_time, temp_topk, temp_kendal = self.Test(idx)
frac_topk += temp_topk / n_valid
frac_kendal += temp_kendal / n_valid
test_end = time.time()
f_out.write('%.6f, %.6f\n' %(frac_topk, frac_kendal)) # write vc into the file
f_out.flush()
print('\niter %d, Top0.01: %.6f, kendal: %.6f'%(iter, frac_topk, frac_kendal))
print('testing %d graphs time: %.2fs' % (n_valid, test_end - test_start))
N_end = time.clock()
print('500 iterations total time: %.2fs' % (N_end - N_start))
print('Training loss is %.4f' % TrainLoss)
sys.stdout.flush()
model_path = '%s/nrange_iter_%d_%d_%d.ckpt' % (save_dir, NUM_MIN, NUM_MAX,iter)
self.SaveModel(model_path)
f_out.close()
def Test(self, gid):
g_list = [self.TestSet.Get(gid)]
start = time.time()
betw_predict = self.Predict(g_list)
end = time.time()
betw_label = self.TestBetwList[gid]
run_time = end - start
topk = self.metrics.RankTopK(betw_label,betw_predict, 0.01)
kendal = self.metrics.RankKendal(betw_label,betw_predict)
return run_time, topk, kendal
def findModel(self):
VCFile = './models/ValidValue.csv'
vc_list = []
EarlyStop_start = 2
EarlyStop_length = 1
num_line = 0
for line in open(VCFile):
data = float(line.split(',')[0].strip(',')) #0:topK; 1:kendal
vc_list.append(data)
num_line += 1
if num_line > EarlyStop_start and data < np.mean(vc_list[-(EarlyStop_length+1):-1]):
best_vc = num_line
break
best_model_iter = 500 * best_vc
best_model = './models/nrange_iter_%d.ckpt' % (best_model_iter)
return best_model
def EvaluateSynData(self, data_test, model_file=None): # test synthetic data
if model_file == None: # if user do not specify the model_file
model_file = self.findModel()
print('The best model is :%s' % (model_file))
sys.stdout.flush()
self.LoadModel(model_file)
n_test = 100
frac_run_time, frac_topk, frac_kendal = 0.0, 0.0, 0.0
self.ClearTestGraphs()
f = open(data_test, 'rb')
ValidData = cp.load(f)
TestGraphList = ValidData[0]
self.TestBetwList = ValidData[1]
for i in tqdm(range(n_test)):
g = TestGraphList[i]
self.InsertGraph(g, is_test=True)
run_time, topk, kendal = self.test(i)
frac_run_time += run_time/n_test
frac_topk += topk/n_test
frac_kendal += kendal/n_test
print('\nRun_time, Top1%, Kendall tau: %.6f, %.6f, %.6f'% (frac_run_time, frac_topk, frac_kendal))
return frac_run_time, frac_topk, frac_kendal
def EvaluateRealData(self, model_file, data_test, label_file): # test real data
g = nx.read_weighted_edgelist(data_test)
sys.stdout.flush()
self.LoadModel(model_file)
betw_label = []
for line in open(label_file):
betw_label.append(float(line.strip().split()[1]))
self.TestBetwList.append(betw_label)
start = time.time()
self.InsertGraph(g, is_test=True)
end = time.time()
run_time = end - start
g_list = [self.TestSet.Get(0)]
start1 = time.time()
betw_predict = self.Predict(g_list)
end1 = time.time()
betw_label = self.TestBetwList[0]
run_time += end1 - start1
top001 = self.metrics.RankTopK(betw_label, betw_predict, 0.01)
top005 = self.metrics.RankTopK(betw_label, betw_predict, 0.05)
top01 = self.metrics.RankTopK(betw_label, betw_predict, 0.1)
kendal = self.metrics.RankKendal(betw_label, betw_predict)
self.ClearTestGraphs()
return top001, top005, top01, kendal, run_time
def SaveModel(self, model_path):
self.saver.save(self.session, model_path)
print('model has been saved success!')
def LoadModel(self, model_path):
self.saver.restore(self.session, model_path)
print('restore model from file successfully')
def GenNetwork(self, g): # networkx2four
edges = g.edges()
if len(edges) > 0:
a, b = zip(*edges)
A = np.array(a)
B = np.array(b)
else:
A = np.array([0])
B = np.array([0])
return graph.py_Graph(len(g.nodes()), len(edges), A, B)