-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathdcc_subsection.py
107 lines (78 loc) · 3.65 KB
/
dcc_subsection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
#Caroline Ross 14 December 2018
#Plots a sub-section of dcc correlation
#Input = the correlation.txt file from MD-TASK
import matplotlib
import matplotlib.pyplot as plt
from matplotlib import cm as cm
import numpy as np
def plot_map(correlation, title, output_prefix, x_labels, y_labels):
M = np.array(correlation)
fig, ax = plt.subplots()
colors = [('white')] + [(cm.jet(i)) for i in range(40,250)]
new_map = matplotlib.colors.LinearSegmentedColormap.from_list('new_map', colors, N=300)
heatmap = ax.pcolor(M, cmap=new_map, vmin=-1, vmax=1)
fig = plt.gcf()
ax.set_frame_on(False)
ax.grid(False)
# put the major ticks at the middle of each cell
ax.set_yticks(np.arange(M.shape[0])+0.5, minor=False)
ax.set_xticks(np.arange(M.shape[1])+0.5, minor=False)
ax.set_xticklabels(x_labels,fontsize=8, minor=False)
ax.set_yticklabels(y_labels,fontsize=8, minor=False)
plt.xticks(rotation=90)
# Turn off all the ticks
ax = plt.gca()
for t in ax.xaxis.get_major_ticks():
t.tick1On = False
t.tick2On = False
for t in ax.yaxis.get_major_ticks():
t.tick1On = False
t.tick2On = False
plt.title(title, fontsize=16)
plt.xlabel('Residue Index', fontsize=12)
plt.ylabel("Residue Index", fontsize=12)
cbar = plt.colorbar(heatmap, orientation="vertical")
plt.savefig('%s.png' % output_prefix, dpi=300,format="png")
plt.close('all')
def print_correlation(correlation, output_prefix):
with open("%s.txt" % output_prefix, "w") as w:
rows = correlation.shape[0]
cols = correlation.shape[1]
for r in range(rows):
for c in range(cols):
w.write('%s ' % str(correlation[r,c]))
w.write('\n')
#Reads in correlation.txt file:
try:
f = open('correlation.txt', 'r') #change file name here for use on different file
correlation_values = f.readlines() #reads in all lines of correlation.txt
f.close() #close file
except IOError:
print ('\n**************************************\nERROR!! FILE NOT FOUND:\n**************************************\n') #error if correlation.txt file not found
sys.exit()
#############################################################################################################################################################
# This code can be updated to analyse any section of the protein
#
#############################################################################################################################################################
#Extract a section
proteinSectionA_start = 1 #change as required
proteinSectionA_end = 27
proteinSectionB_start = 109
proteinSectionB_end = 120
xatoms = proteinSectionA_end-proteinSectionA_start+1 #(sectionA will be rows in matrix - labeled along y axis)
yatoms = proteinSectionB_end-proteinSectionB_start+1 #(sectionB will be columns in matrix - labeled along x axis)
Sub_cMatrix = np.zeros((xatoms, yatoms)) #set size of sub_matrix
for i,x in enumerate(range(proteinSectionA_start-1,proteinSectionA_end)):
atom_specific_correlation = correlation_values[x].split()
for j, y in enumerate(range(proteinSectionB_start-1,proteinSectionB_end)):
x_yCorrelation = float(atom_specific_correlation[y].strip())
Sub_cMatrix[i, j] = x_yCorrelation
x_labels = []
for i in range(proteinSectionB_start,proteinSectionB_end+1):
x_labels.append(str(i))
y_labels = []
for i in range(proteinSectionA_start,proteinSectionA_end+1):
y_labels.append(str(i))
Title = "Sub-Correlation Plot" #Change here as required
ImageName = "Sub-correlation" #Change here as required
plot_map(Sub_cMatrix, Title,ImageName, x_labels, y_labels)