-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_ner.py
868 lines (755 loc) · 34.3 KB
/
run_ner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
#! usr/bin/env python3
# -*- coding:utf-8 -*-
"""
Copyright 2018 The Google AI Language Team Authors.
BASED ON Google_BERT.
reference from :zhoukaiyin/
@Author:Macan
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import os
import json
import tensorflow as tf
import codecs
from tensorflow.contrib.layers.python.layers import initializers
from tensorflow.contrib import estimator
from bert import modeling
from bert import optimization
from bert import tokenization
from lstm_crf_layer import BLSTM_CRF
import tf_metrics
import pickle
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
flags = tf.flags
FLAGS = flags.FLAGS
# if os.name == 'nt':
# bert_path = 'H:\迅雷下载\chinese_L-12_H-768_A-12\chinese_L-12_H-768_A-12'
# root_path = r'C:\workspace\python\BERT-BiLSMT-CRF-NER'
# else:
# bert_path = '/home/macan/ml/data/chinese_L-12_H-768_A-12/'
# root_path = '/home/macan/ml/workspace/BERT-BiLSTM-CRF-NER'
flags.DEFINE_string(
"data_dir", None,
"The input datadir."
)
flags.DEFINE_string(
"bert_config_file", None,
"The config json file corresponding to the pre-trained BERT model."
)
flags.DEFINE_string(
"task_name", 'ner', "The name of the task to train."
)
flags.DEFINE_string("vocab_file", None,
"The vocabulary file that the BERT model was trained on.")
flags.DEFINE_string(
"output_dir", None,
"The output directory where the model checkpoints will be written."
)
## Other parameters
flags.DEFINE_string(
"init_checkpoint", None,
"Initial checkpoint (usually from a pre-trained BERT model)."
)
flags.DEFINE_bool(
"do_lower_case", True,
"Whether to lower case the input text."
)
flags.DEFINE_integer(
"max_seq_length", 128,
"The maximum total input sequence length after WordPiece tokenization."
)
flags.DEFINE_boolean('clean', True, 'remove the files which created by last training')
flags.DEFINE_bool("do_train", True, "Whether to run training."
)
flags.DEFINE_bool("use_tpu", False, "Whether to use TPU or GPU/CPU.")
flags.DEFINE_bool("do_eval", False, "Whether to run eval on the dev set.")
flags.DEFINE_bool("do_predict", False, "Whether to run the model in inference mode on the test set.")
flags.DEFINE_integer("train_batch_size", 64, "Total batch size for training.")
flags.DEFINE_integer("eval_batch_size", 8, "Total batch size for eval.")
flags.DEFINE_integer("predict_batch_size", 8, "Total batch size for predict.")
flags.DEFINE_float("learning_rate", 5e-5, "The initial learning rate for Adam.")
flags.DEFINE_float("num_train_epochs", 15.0, "Total number of training epochs to perform.")
flags.DEFINE_float('droupout_rate', 0.5, 'Dropout rate')
flags.DEFINE_float('clip', 5, 'Gradient clip')
flags.DEFINE_float(
"warmup_proportion", 0.1,
"Proportion of training to perform linear learning rate warmup for. "
"E.g., 0.1 = 10% of training.")
flags.DEFINE_integer("save_checkpoints_steps", 1000,
"How often to save the model checkpoint.")
flags.DEFINE_integer("iterations_per_loop", 1000,
"How many steps to make in each estimator call.")
tf.flags.DEFINE_string("master", None, "[Optional] TensorFlow master URL.")
flags.DEFINE_integer(
"num_tpu_cores", 8,
"Only used if `use_tpu` is True. Total number of TPU cores to use.")
flags.DEFINE_string('data_config_path', None,
'data config file, which save train and dev config')
# lstm parame
flags.DEFINE_integer('lstm_size', 128, 'size of lstm units')
flags.DEFINE_integer('num_layers', 1, 'number of rnn layers, default is 1')
flags.DEFINE_string('cell', 'lstm', 'which rnn cell used')
# 移除模型中的Adam相关参数,使得最终模型文件为300-400M, 不会是原来的1.2G, 移除后的模型可以用于预测阶段。
#Add code to remove the adam related parameters in the model, and reduce the size of the model file from 1.3GB to 400MB.
# https://github.com/google-research/bert/issues/99
# If True last model'adam related parameters will be removed, False not
flags.DEFINE_boolean('filter_adam_var', True, 'remove all the adam variables of model')
class InputExample(object):
"""A single training/test example for simple sequence classification."""
def __init__(self, guid, text, label=None):
"""Constructs a InputExample.
Args:
guid: Unique id for the example.
text_a: string. The untokenized text of the first sequence. For single
sequence tasks, only this sequence must be specified.
label: (Optional) string. The label of the example. This should be
specified for train and dev examples, but not for test examples.
"""
self.guid = guid
self.text = text
self.label = label
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self, input_ids, input_mask, segment_ids, label_ids, ):
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
self.label_ids = label_ids
# self.label_mask = label_mask
class DataProcessor(object):
"""Base class for data converters for sequence classification data sets."""
def get_train_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the train set."""
raise NotImplementedError()
def get_dev_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the dev set."""
raise NotImplementedError()
def get_labels(self):
"""Gets the list of labels for this data set."""
raise NotImplementedError()
@classmethod
def _read_data(cls, input_file):
"""Reads a BIO data."""
with codecs.open(input_file, 'r', encoding='utf-8') as f:
lines = []
words = []
labels = []
for line in f:
contends = line.strip()
tokens = contends.split(' ')
if len(tokens) == 2:
word = line.strip().split(' ')[0]
label = line.strip().split(' ')[-1]
else:
if len(contends) == 0:
l = ' '.join([label for label in labels if len(label) > 0])
w = ' '.join([word for word in words if len(word) > 0])
lines.append([l, w])
words = []
labels = []
continue
if contends.startswith("-DOCSTART-"):
words.append('')
continue
words.append(word)
labels.append(label)
return lines #[[a1 a2 a3,o,b,i]]
class NerProcessor(DataProcessor):
def get_train_examples(self, data_dir):
return self._create_example(
self._read_data(os.path.join(data_dir, "train.txt")), "train"
)
def get_dev_examples(self, data_dir):
return self._create_example(
self._read_data(os.path.join(data_dir, "dev.txt")), "dev"
)
def get_test_examples(self, data_dir):
return self._create_example(
self._read_data(os.path.join(data_dir, "test.txt")), "test")
def get_labels(self):
return ["O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", "X", "[CLS]", "[SEP]"]
def _create_example(self, lines, set_type):
examples = []
for (i, line) in enumerate(lines):
guid = "%s-%s" % (set_type, i)
text = tokenization.convert_to_unicode(line[1])
label = tokenization.convert_to_unicode(line[0])
if i == 0:
print('label示例:{}'.format(label))
examples.append(InputExample(guid=guid, text=text, label=label))
return examples
def write_tokens(tokens, mode):
"""
将序列解析结果写入到文件中
只在mode=test的时候启用
:param tokens:
:param mode:
:return:
"""
if mode == "test":
path = os.path.join(FLAGS.output_dir, "token_" + mode + ".txt")
wf = codecs.open(path, 'a', encoding='utf-8')
for token in tokens:
if token != "**NULL**":
wf.write(token + '\n')
wf.close()
def convert_single_example(ex_index, example, label_list, max_seq_length, tokenizer, mode):
"""
将一个样本进行分析,然后将字转化为id, 标签转化为id,然后结构化到InputFeatures对象中
:param ex_index: index
:param example: 一个样本
:param label_list: 标签列表
:param max_seq_length:
:param tokenizer:
:param mode:
:return:
"""
label_map = {}
# 1表示从1开始对label进行index化
for (i, label) in enumerate(label_list, 1):
label_map[label] = i
# 保存label->index 的map
if not os.path.exists(os.path.join(FLAGS.output_dir, 'label2id.pkl')):
with codecs.open(os.path.join(FLAGS.output_dir, 'label2id.pkl'), 'wb') as w:
pickle.dump(label_map, w)
textlist = example.text.split(' ')
labellist = example.label.split(' ')
tokens = []
labels = []
for i, word in enumerate(textlist):
# 分词,如果是中文,就是分字
token = tokenizer.tokenize(word)
tokens.extend(token)
label_1 = labellist[i]
for m in range(len(token)):
if m == 0:
labels.append(label_1)
else: # 一般不会出现else
labels.append("X")
# tokens = tokenizer.tokenize(example.text)
# 序列截断
if len(tokens) >= max_seq_length - 1:
tokens = tokens[0:(max_seq_length - 2)] # -2 的原因是因为序列需要加一个句首和句尾标志
labels = labels[0:(max_seq_length - 2)]
ntokens = []
segment_ids = []
label_ids = []
ntokens.append("[CLS]") # 句子开始设置CLS 标志
segment_ids.append(0)
# append("O") or append("[CLS]") not sure!
label_ids.append(label_map["[CLS]"]) # O OR CLS 没有任何影响,不过我觉得O 会减少标签个数,不过拒收和句尾使用不同的标志来标注,使用LCS 也没毛病
for i, token in enumerate(tokens):
ntokens.append(token)
segment_ids.append(0)
label_ids.append(label_map[labels[i]])
ntokens.append("[SEP]") # 句尾添加[SEP] 标志
segment_ids.append(0)
# append("O") or append("[SEP]") not sure!
label_ids.append(label_map["[SEP]"])
input_ids = tokenizer.convert_tokens_to_ids(ntokens) # 将序列中的字(ntokens)转化为ID形式
input_mask = [1] * len(input_ids)
# label_mask = [1] * len(input_ids)
# padding, 使用
while len(input_ids) < max_seq_length:
input_ids.append(0)
input_mask.append(0)
segment_ids.append(0)
# we don't concerned about it!
label_ids.append(0)
ntokens.append("**NULL**")
# label_mask.append(0)
# print(len(input_ids))
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
assert len(label_ids) == max_seq_length
# assert len(label_mask) == max_seq_length
# 打印部分样本数据信息
if ex_index < 5:
tf.logging.info("*** Example ***")
tf.logging.info("guid: %s" % (example.guid))
tf.logging.info("tokens: %s" % " ".join(
[tokenization.printable_text(x) for x in tokens]))
tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
tf.logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
tf.logging.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
tf.logging.info("label_ids: %s" % " ".join([str(x) for x in label_ids]))
# tf.logging.info("label_mask: %s" % " ".join([str(x) for x in label_mask]))
# 结构化为一个类
feature = InputFeatures(
input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
label_ids=label_ids,
# label_mask = label_mask
)
# mode='test'的时候才有效
write_tokens(ntokens, mode)
return feature
def filed_based_convert_examples_to_features(
examples, label_list, max_seq_length, tokenizer, output_file, mode=None
):
"""
将数据转化为TF_Record 结构,作为模型数据输入
:param examples: 样本
:param label_list:标签list
:param max_seq_length: 预先设定的最大序列长度
:param tokenizer: tokenizer 对象
:param output_file: tf.record 输出路径
:param mode:
:return:
"""
writer = tf.python_io.TFRecordWriter(output_file)
# 遍历训练数据
for (ex_index, example) in enumerate(examples):
if ex_index % 5000 == 0:
tf.logging.info("Writing example %d of %d" % (ex_index, len(examples)))
# 对于每一个训练样本,
feature = convert_single_example(ex_index, example, label_list, max_seq_length, tokenizer, mode)
def create_int_feature(values):
f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
return f
features = collections.OrderedDict()
features["input_ids"] = create_int_feature(feature.input_ids)
features["input_mask"] = create_int_feature(feature.input_mask)
features["segment_ids"] = create_int_feature(feature.segment_ids)
features["label_ids"] = create_int_feature(feature.label_ids)
# features["label_mask"] = create_int_feature(feature.label_mask)
# tf.train.Example/Feature 是一种协议,方便序列化???
tf_example = tf.train.Example(features=tf.train.Features(feature=features))
writer.write(tf_example.SerializeToString())
def file_based_input_fn_builder(input_file, seq_length, is_training, drop_remainder):
name_to_features = {
"input_ids": tf.FixedLenFeature([seq_length], tf.int64),
"input_mask": tf.FixedLenFeature([seq_length], tf.int64),
"segment_ids": tf.FixedLenFeature([seq_length], tf.int64),
"label_ids": tf.FixedLenFeature([seq_length], tf.int64),
# "label_ids":tf.VarLenFeature(tf.int64),
# "label_mask": tf.FixedLenFeature([seq_length], tf.int64),
}
def _decode_record(record, name_to_features):
example = tf.parse_single_example(record, name_to_features)
for name in list(example.keys()):
t = example[name]
if t.dtype == tf.int64:
t = tf.to_int32(t)
example[name] = t
return example
def input_fn(params):
batch_size = params["batch_size"]
d = tf.data.TFRecordDataset(input_file)
if is_training:
d = d.repeat()
d = d.shuffle(buffer_size=100)
d = d.apply(tf.contrib.data.map_and_batch(
lambda record: _decode_record(record, name_to_features),
batch_size=batch_size,
drop_remainder=drop_remainder
))
return d
return input_fn
def create_model(bert_config, is_training, input_ids, input_mask,
segment_ids, labels, num_labels, use_one_hot_embeddings):
"""
创建X模型
:param bert_config: bert 配置
:param is_training:
:param input_ids: 数据的idx 表示
:param input_mask:
:param segment_ids:
:param labels: 标签的idx 表示
:param num_labels: 类别数量
:param use_one_hot_embeddings:
:return:
"""
# 使用数据加载BertModel,获取对应的字embedding
model = modeling.BertModel(
config=bert_config,
is_training=is_training,
input_ids=input_ids,
input_mask=input_mask,
token_type_ids=segment_ids,
use_one_hot_embeddings=use_one_hot_embeddings
)
# 获取对应的embedding 输入数据[batch_size, seq_length, embedding_size]
embedding = model.get_sequence_output()
max_seq_length = embedding.shape[1].value
used = tf.sign(tf.abs(input_ids))
lengths = tf.reduce_sum(used, reduction_indices=1) # [batch_size] 大小的向量,包含了当前batch中的序列长度
blstm_crf = BLSTM_CRF(embedded_chars=embedding, hidden_unit=FLAGS.lstm_size, cell_type=FLAGS.cell, num_layers=FLAGS.num_layers,
dropout_rate=FLAGS.droupout_rate, initializers=initializers, num_labels=num_labels,
seq_length=max_seq_length, labels=labels, lengths=lengths, is_training=is_training)
rst = blstm_crf.add_blstm_crf_layer(crf_only=True)
return rst
def model_fn_builder(bert_config, num_labels, init_checkpoint, learning_rate,
num_train_steps, num_warmup_steps, use_tpu,
use_one_hot_embeddings):
"""
构建模型
:param bert_config:
:param num_labels:
:param init_checkpoint:
:param learning_rate:
:param num_train_steps:
:param num_warmup_steps:
:param use_tpu:
:param use_one_hot_embeddings:
:return:
"""
def model_fn(features, labels, mode, params):
tf.logging.info("*** Features ***")
for name in sorted(features.keys()):
tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape))
input_ids = features["input_ids"]
input_mask = features["input_mask"]
segment_ids = features["segment_ids"]
label_ids = features["label_ids"]
print('shape of input_ids', input_ids.shape)
# label_mask = features["label_mask"]
is_training = (mode == tf.estimator.ModeKeys.TRAIN)
# 使用参数构建模型,input_idx 就是输入的样本idx表示,label_ids 就是标签的idx表示
(total_loss, logits, trans, pred_ids) = create_model(
bert_config, is_training, input_ids, input_mask, segment_ids, label_ids,
num_labels, use_one_hot_embeddings)
tvars = tf.trainable_variables()
scaffold_fn = None
# 加载BERT模型
if init_checkpoint:
(assignment_map, initialized_variable_names) = modeling.get_assignment_map_from_checkpoint(tvars,
init_checkpoint)
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
if use_tpu:
def tpu_scaffold():
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
return tf.train.Scaffold()
scaffold_fn = tpu_scaffold
else:
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
tf.logging.info("**** Trainable Variables ****")
# 打印加载模型的参数
# for var in tvars:
# init_string = ""
# if var.name in initialized_variable_names:
# init_string = ", *INIT_FROM_CKPT*"
# tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape,
# init_string)
output_spec = None
if mode == tf.estimator.ModeKeys.TRAIN:
train_op = optimization.create_optimizer(
total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu)
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
loss=total_loss,
train_op=train_op,
scaffold_fn=scaffold_fn) # 钩子,这里用来将BERT中的参数作为我们模型的初始值
elif mode == tf.estimator.ModeKeys.EVAL:
# 针对NER ,进行了修改
def metric_fn(label_ids, pred_ids):
# 首先对结果进行维特比解码
# crf 解码
indices = [2, 3, 4, 5, 6, 7] # indice参数告诉评估矩阵评估哪些标签,与label_list相对应
weight = tf.sequence_mask(FLAGS.max_seq_length)
precision = tf_metrics.precision(label_ids, pred_ids, num_labels, indices, weight)
recall = tf_metrics.recall(label_ids, pred_ids, num_labels, indices, weight)
f = tf_metrics.f1(label_ids, pred_ids, num_labels, indices, weight)
return {
"eval_precision": precision,
"eval_recall": recall,
"eval_f": f,
# "eval_loss": loss,
}
eval_metrics = (metric_fn, [label_ids, pred_ids])
# eval_metrics = (metric_fn, [label_ids, logits])
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
loss=total_loss,
eval_metrics=eval_metrics,
scaffold_fn=scaffold_fn) #
else:
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
predictions=pred_ids,
scaffold_fn=scaffold_fn
)
return output_spec
return model_fn
def main(_):
tf.logging.set_verbosity(tf.logging.INFO)
processors = {
"ner": NerProcessor
}
# if not FLAGS.do_train and not FLAGS.do_eval:
# raise ValueError("At least one of `do_train` or `do_eval` must be True.")
bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)
if FLAGS.max_seq_length > bert_config.max_position_embeddings:
raise ValueError(
"Cannot use sequence length %d because the BERT model "
"was only trained up to sequence length %d" %
(FLAGS.max_seq_length, bert_config.max_position_embeddings))
# 在train 的时候,才删除上一轮产出的文件,在predicted 的时候不做clean
if FLAGS.clean and FLAGS.do_train:
if os.path.exists(FLAGS.output_dir):
def del_file(path):
ls = os.listdir(path)
for i in ls:
c_path = os.path.join(path, i)
if os.path.isdir(c_path):
del_file(c_path)
else:
os.remove(c_path)
try:
del_file(FLAGS.output_dir)
except Exception as e:
print(e)
print('pleace remove the files of output dir and data.conf')
exit(-1)
if os.path.exists(FLAGS.data_config_path):
try:
os.remove(FLAGS.data_config_path)
except Exception as e:
print(e)
print('pleace remove the files of output dir and data.conf')
exit(-1)
task_name = FLAGS.task_name.lower()
if task_name not in processors:
raise ValueError("Task not found: %s" % (task_name))
processor = processors[task_name]()
label_list = processor.get_labels()
print('label_list: {}'.format(label_list))
if not os.path.exists(os.path.join(FLAGS.output_dir, 'label_list.pkl')):
with open(os.path.join(FLAGS.output_dir, 'label_list.pkl'), 'wb') as fd:
pickle.dump(label_list, fd)
tokenizer = tokenization.FullTokenizer(
vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)
tpu_cluster_resolver = None
if FLAGS.use_tpu and FLAGS.tpu_name:
tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(
FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)
is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2
run_config = tf.contrib.tpu.RunConfig(
cluster=tpu_cluster_resolver,
master=FLAGS.master,
model_dir=FLAGS.output_dir,
save_checkpoints_steps=FLAGS.save_checkpoints_steps,
tpu_config=tf.contrib.tpu.TPUConfig(
iterations_per_loop=FLAGS.iterations_per_loop,
num_shards=FLAGS.num_tpu_cores,
per_host_input_for_training=is_per_host))
train_examples = None
num_train_steps = None
num_warmup_steps = None
if os.path.exists(FLAGS.data_config_path):
with codecs.open(FLAGS.data_config_path) as fd:
data_config = json.load(fd)
else:
data_config = {}
if FLAGS.do_train:
# 加载训练数据
if len(data_config) == 0:
train_examples = processor.get_train_examples(FLAGS.data_dir)
num_train_steps = int(
len(train_examples) / FLAGS.train_batch_size * FLAGS.num_train_epochs)
num_warmup_steps = int(num_train_steps * FLAGS.warmup_proportion)
data_config['num_train_steps'] = num_train_steps
data_config['num_warmup_steps'] = num_warmup_steps
data_config['num_train_size'] = len(train_examples)
else:
num_train_steps = int(data_config['num_train_steps'])
num_warmup_steps = int(data_config['num_warmup_steps'])
# 返回的model_dn 是一个函数,其定义了模型,训练,评测方法,并且使用钩子参数,加载了BERT模型的参数进行了自己模型的参数初始化过程
# tf 新的架构方法,通过定义model_fn 函数,定义模型,然后通过EstimatorAPI进行模型的其他工作,Es就可以控制模型的训练,预测,评估工作等。
model_fn = model_fn_builder(
bert_config=bert_config,
num_labels=len(label_list) + 1,
init_checkpoint=FLAGS.init_checkpoint,
learning_rate=FLAGS.learning_rate,
num_train_steps=num_train_steps,
num_warmup_steps=num_warmup_steps,
use_tpu=FLAGS.use_tpu,
use_one_hot_embeddings=FLAGS.use_tpu)
estimator = tf.contrib.tpu.TPUEstimator(
use_tpu=FLAGS.use_tpu,
model_fn=model_fn,
config=run_config,
train_batch_size=FLAGS.train_batch_size,
eval_batch_size=FLAGS.eval_batch_size,
predict_batch_size=FLAGS.predict_batch_size)
if FLAGS.do_train:
# 1. 将数据转化为tf_record 数据
if data_config.get('train.tf_record_path', '') == '':
train_file = os.path.join(FLAGS.output_dir, "train.tf_record")
filed_based_convert_examples_to_features(
train_examples, label_list, FLAGS.max_seq_length, tokenizer, train_file)
else:
train_file = data_config.get('train.tf_record_path')
num_train_size = num_train_size = int(data_config['num_train_size'])
tf.logging.info("***** Running training *****")
tf.logging.info(" Num examples = %d", num_train_size)
tf.logging.info(" Batch size = %d", FLAGS.train_batch_size)
tf.logging.info(" Num steps = %d", num_train_steps)
# 2.读取record 数据,组成batch
train_input_fn = file_based_input_fn_builder(
input_file=train_file,
seq_length=FLAGS.max_seq_length,
is_training=True,
drop_remainder=True)
estimator.train(input_fn=train_input_fn, max_steps=num_train_steps)
if FLAGS.do_eval:
if data_config.get('eval.tf_record_path', '') == '':
eval_examples = processor.get_dev_examples(FLAGS.data_dir)
eval_file = os.path.join(FLAGS.output_dir, "eval.tf_record")
filed_based_convert_examples_to_features(
eval_examples, label_list, FLAGS.max_seq_length, tokenizer, eval_file)
data_config['eval.tf_record_path'] = eval_file
data_config['num_eval_size'] = len(eval_examples)
else:
eval_file = data_config['eval.tf_record_path']
# 打印验证集数据信息
num_eval_size = data_config.get('num_eval_size', 0)
tf.logging.info("***** Running evaluation *****")
tf.logging.info(" Num examples = %d", num_eval_size)
tf.logging.info(" Batch size = %d", FLAGS.eval_batch_size)
eval_steps = None
if FLAGS.use_tpu:
eval_steps = int(num_eval_size / FLAGS.eval_batch_size)
eval_drop_remainder = True if FLAGS.use_tpu else False
eval_input_fn = file_based_input_fn_builder(
input_file=eval_file,
seq_length=FLAGS.max_seq_length,
is_training=False,
drop_remainder=eval_drop_remainder)
result = estimator.evaluate(input_fn=eval_input_fn, steps=eval_steps)
output_eval_file = os.path.join(FLAGS.output_dir, "eval_results.txt")
with codecs.open(output_eval_file, "w", encoding='utf-8') as writer:
tf.logging.info("***** Eval results *****")
for key in sorted(result.keys()):
tf.logging.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
# 保存数据的配置文件,避免在以后的训练过程中多次读取训练以及测试数据集,消耗时间
if not os.path.exists(FLAGS.data_config_path):
with codecs.open(FLAGS.data_config_path, 'a', encoding='utf-8') as fd:
json.dump(data_config, fd)
if FLAGS.do_predict:
token_path = os.path.join(FLAGS.output_dir, "token_test.txt")
if os.path.exists(token_path):
os.remove(token_path)
with codecs.open(os.path.join(FLAGS.output_dir, 'label2id.pkl'), 'rb') as rf:
label2id = pickle.load(rf)
id2label = {value: key for key, value in label2id.items()}
predict_examples = processor.get_test_examples(FLAGS.data_dir)
predict_file = os.path.join(FLAGS.output_dir, "predict.tf_record")
filed_based_convert_examples_to_features(predict_examples, label_list,
FLAGS.max_seq_length, tokenizer,
predict_file, mode="test")
tf.logging.info("***** Running prediction*****")
tf.logging.info(" Num examples = %d", len(predict_examples))
tf.logging.info(" Batch size = %d", FLAGS.predict_batch_size)
if FLAGS.use_tpu:
# Warning: According to tpu_estimator.py Prediction on TPU is an
# experimental feature and hence not supported here
raise ValueError("Prediction in TPU not supported")
predict_drop_remainder = True if FLAGS.use_tpu else False
predict_input_fn = file_based_input_fn_builder(
input_file=predict_file,
seq_length=FLAGS.max_seq_length,
is_training=False,
drop_remainder=predict_drop_remainder)
# predicted_result = estimator.evaluate(input_fn=predict_input_fn)
# output_eval_file = os.path.join(FLAGS.output_dir, "predicted_results.txt")
# with codecs.open(output_eval_file, "w", encoding='utf-8') as writer:
# tf.logging.info("***** Predict results *****")
# for key in sorted(predicted_result.keys()):
# tf.logging.info(" %s = %s", key, str(predicted_result[key]))
# writer.write("%s = %s\n" % (key, str(predicted_result[key])))
result = estimator.predict(input_fn=predict_input_fn)
output_predict_file = os.path.join(FLAGS.output_dir, "label_test.txt")
def result_to_pair(writer):
for predict_line, prediction in zip(predict_examples, result):
idx = 0
line = ''
line_token = str(predict_line.text).split(' ')
label_token = str(predict_line.label).split(' ')
len_seq = len(label_token)
if len(line_token) != len(label_token):
tf.logging.info(predict_line.text)
tf.logging.info(predict_line.label)
for id in prediction:
if idx > len_seq:
break
if id == 0:
continue
curr_labels = id2label[id]
if curr_labels in ['[CLS]', '[SEP]']:
if curr_labels == '[SEP]':
break
continue
# 不知道为什么,这里会出现idx out of range 的错误。。。do not know why here cache list out of range exception!
try:
line += line_token[idx] + ' ' + label_token[idx] + ' ' + curr_labels + '\n'
except Exception as e:
tf.logging.info(e)
tf.logging.info(predict_line.text)
tf.logging.info(predict_line.label)
line = ''
break
idx += 1
writer.write(line + '\n')
# 将模型预测的结果和原始标签写入到文件中,以空格分开,使用conevel.py脚本来预测entity level 的结果并且输出
with codecs.open(output_predict_file, 'w', encoding='utf-8') as writer:
result_to_pair(writer)
from conlleval import return_report
eval_result = return_report(output_predict_file)
print(''.join(eval_result))
with codecs.open(os.path.join(FLAGS.output_dir, 'entity_level_predicted_result.txt'), 'a', encoding='utf-8') as fd:
fd.write(''.join(eval_result))
# def load_data():
# processer = NerProcessor()
# processer.get_labels()
# example = processer.get_train_examples(FLAGS.data_dir)
# print()
def get_last_checkpoint(model_path):
if not os.path.exists(os.path.join(model_path, 'checkpoint')):
tf.logging.info('checkpoint file not exits:'.format(os.path.join(model_path, 'checkpoint')))
return None
last = None
with codecs.open(os.path.join(model_path, 'checkpoint'), 'r', encoding='utf-8') as fd:
for line in fd:
line = line.strip().split(':')
if len(line) != 2:
continue
if line[0] == 'model_checkpoint_path':
last = line[1][2:-1]
break
return last
def adam_filter(model_path):
"""
去掉模型中的Adam相关参数,这些参数在测试的时候是没有用的
:param model_path:
:return:
"""
last_name = get_last_checkpoint(model_path)
if last_name is None:
return
sess = tf.Session()
imported_meta = tf.train.import_meta_graph(os.path.join(model_path, last_name + '.meta'))
imported_meta.restore(sess, os.path.join(model_path, last_name))
need_vars = []
for var in tf.global_variables():
if 'adam_v' not in var.name and 'adam_m' not in var.name:
need_vars.append(var)
saver = tf.train.Saver(need_vars)
saver.save(sess, os.path.join(model_path, 'model.ckpt'))
if __name__ == "__main__":
flags.mark_flag_as_required("data_dir")
flags.mark_flag_as_required("task_name")
flags.mark_flag_as_required("vocab_file")
flags.mark_flag_as_required("bert_config_file")
flags.mark_flag_as_required("output_dir")
tf.app.run()
# filter model
# if FLAGS.filter_adam_var:
# adam_filter(FLAGS.output_dir)